关于量子纠缠,请教各位大虾

新用户注册 | 用户登陆 | 回复 | 刷新 论坛嘉宾: 王连涛

kexuecool


发表文章数: 5
内力值: 70/70
贡献度: 76
人气: 0

关于量子纠缠,请教各位大虾 [文章类型: 原创]

假设一个电中性的粒子分裂成正负两个带电粒子A和B,一个电量为Q,一个电量为-Q,或者,一个动量为P,另一个为-P,或者,一个自旋为正,顺时钟,一个为负,逆时钟,等等。根据量子力学,在我们没有测量A的状态时,A处于一个电量为Q和为-Q的叠加态,或动量为P和-P的叠加态,或自旋为正和为负的叠加态,只有对A测量时,A的状态才突然坍缩为电量为Q或为-Q、动量为P或-P、自旋为正或为负的确定状态。这时,不论A与B相隔多远,B的状态也会同时坍缩。根据电量守恒,如果A的电量为Q,则B的电量必定为--Q。同样,根据动量守恒,如果A的动量为-P,则B的动量必定为P。

显然,在量子纠缠中,有两个关键词,一个是关联,即B的电量、动量或自旋,与A的电量、动量、自旋相关,特别是指与A被测量后坍缩到的状态相关,即B的电量、动量、自旋,完全由A的电量、动量、自旋确定,只要知道了A的A的电量、动量、自旋,就能知道B的A的电量、动量、自旋。另一个关键词是超距的信息传递,或者说,如果只测量A或B中的一个,A、B就会同时坍缩。关联是由电量守恒、动量守恒等守恒定律确定的,如果A的电量为Q,则B的电量必定为-Q,或如果A的动量为P,则B的动量就必定为-P。人们感到奇怪的,不是这种由守恒定律所确定的关联,而是超距作用,A和B会同时坍缩,尽管我们只测量了A,而没有测量B,但B也会同时坍缩。正因为这种超距作用不符合狭义相对论中的光速最大结论,所以爱因思坦等人才认为量子纠缠中存在有问题,即著名的EPR问题。

如何才能验证量子纠缠存在?如果我们验证出A、B之间的由电量、动量等守恒定律所确定的关联,并不能说明存在量子纠缠,如果A、B之间存在这种关联,只能说明电量、动量守恒定律是成立的,如果测量不到这种关联,则电量、动量就不守恒了。只有当我们验证出如果A坍缩时,尽管我们只测量了A而未测量B,B也必定同时坍缩,才能说明存在有量子纠缠。

贝尔不等式,是关于A、B之间关联情况的关系式,而不是A、B之间有、无超距作用的关系式。如果贝尔不等式成立或不成立,只能说明A、B之间存在或不存在由电量、动量等守恒定律所确定的关联。但不论贝尔不等式成立或不成立,都不能说明A、B之间是否存在着超距作用。但为什么大家认为,通过验证贝尔不等式是否成立,就能说明是否存在量子纠缠?我的上述理解究竟在那里出了问题?

如果我的理解成立,则我认为,在量子力学的语境中,量子纠缠是无法验证其是否存在的。只有当我们测量A的状态时,即当A的状态因测量而坍缩时,在不直接测量B的状态的前提下,如果我们能设法知道B的状态也同时产生了坍缩,才能说明存在有量子纠缠。如果我们直接测量B的状态,则我们就无法判定,B的状态的坍缩,究竟是由于A的坍缩而通过量子纠缠或超距的信息传递引起,还是由于我们直接测量B的状态而引起。B的状态的坍缩,可以由A的坍缩引起,但根据量子力学,也可以由对B测量引起,测量会导致波函数的坍缩。但不对B的状态进行测量,我们又怎么能知道B的状态究竟有没有坍缩?

发表时间: 2016-12-28, 06:15:28 个人资料

kexuecool


发表文章数: 5
内力值: 70/70
贡献度: 76
人气: 0

Re: 关于量子纠缠,请教各位大虾 [文章类型: 原创]

仔细一看,多写几个字,修改如下:

假设一个电中性的粒子分裂成正负两个带电粒子A和B,一个电量为Q,一个电量为-Q,或者,一个动量为P,另一个为-P,或者,一个自旋为正,顺时钟,一个为负,逆时钟,等等。根据量子力学,在我们没有测量A的状态时,A处于一个电量为Q和为-Q的叠加态,或动量为P和-P的叠加态,或自旋为正和为负的叠加态,只有对A测量时,A的状态才突然坍缩为电量为Q或为-Q、动量为P或-P、自旋为正或为负的确定状态。这时,不论A与B相隔多远,B的状态也会同时坍缩。根据电量守恒,如果A的电量为Q,则B的电量必定为-Q。同样,根据动量守恒,如果A的动量为-P,则B的动量必定为P。

显然,在量子纠缠中,有两个关键词,一个是关联,即B的电量、动量或自旋,与A的电量、动量、自旋相关,特别是指与A被测量后坍缩到的状态相关,即B的电量、动量、自旋,完全由A的电量、动量、自旋确定,只要知道了A的电量、动量、自旋,就能知道B的电量、动量、自旋。另一个关键词是超距的信息传递,或者说,如果只测量A或B中的一个,A、B就会同时坍缩。关联是由电量守恒、动量守恒等守恒定律确定的,如果A的电量为Q,则B的电量必定为-Q,或如果A的动量为P,则B的动量就必定为-P。人们感到奇怪的,不是这种由守恒定律所确定的关联,而是超距作用,A和B会同时坍缩,尽管我们只测量了A,而没有测量B,但B也会同时坍缩。正因为这种超距作用不符合狭义相对论中的光速最大结论,所以爱因思坦等人才认为量子纠缠中存在有问题,即著名的EPR问题。

如何才能验证量子纠缠存在?如果我们验证出A、B之间的由电量、动量等守恒定律所确定的关联,并不能说明存在量子纠缠,如果A、B之间存在这种关联,只能说明电量、动量守恒定律是成立的,如果测量不到这种关联,则电量、动量就不守恒了。只有当我们验证出如果A坍缩时,尽管我们只测量了A而未测量B,B也必定同时坍缩,才能说明存在有量子纠缠。

贝尔不等式,是关于A、B之间关联情况的关系式,而不是A、B之间有、无超距作用的关系式。如果贝尔不等式成立或不成立,只能说明A、B之间存在或不存在由电量、动量等守恒定律所确定的关联。但不论贝尔不等式成立或不成立,都不能说明A、B之间是否存在着超距作用。这是我对量子纠缠的理解。但为什么大家认为,通过验证贝尔不等式是否成立,就能说明是否存在量子纠缠?我的上述理解究竟在那里出了问题?

如果我的理解成立,则我认为,在量子力学的语境中,量子纠缠是无法验证其是否存在的。只有当我们测量A的状态时,即当A的状态因测量而坍缩时,在不直接测量B的状态的前提下,如果我们能设法知道B的状态也同时产生了坍缩,才能说明存在有量子纠缠。如果我们直接测量B的状态,则我们就无法判定,B的状态的坍缩,究竟是由于A的坍缩而通过量子纠缠或超距的信息传递引起,还是由于我们直接测量B的状态而引起。B的状态的坍缩,可以由A的坍缩引起,但根据量子力学,也可以由对B测量引起,测量会导致波函数的坍缩。但不对B的状态进行测量,我们又怎么能知道B的状态究竟有没有坍缩?

发表时间: 2016-12-28, 06:35:51 个人资料
您尚未登陆 | 用户登陆