印度人贴出论文说否定了Riemann假设

新用户注册 | 用户登陆 | 刷新
论坛嘉宾: 萍踪浪迹 gauge 季候风

dfj


发表文章数: 186
内力值: 182/182
贡献度: 768
人气: 122

学术成员

印度人贴出论文说否定了Riemann假设 [文章类型: 转载]

发信人: EulerGauss (活到老学到老), 信区: D_Maths
标 题: 印度人贴出论文说否定了Riemann假设
发信站: 南京大学小百合站 (Wed Mar 14 08:11:44 2007)


http://arxiv.org/abs/math.NT/0703367

Mathematics, abstract
math.NT/0703367
From: Tribikram Pati [view email]
Date: Tue, 13 Mar 2007 07:33:36 GMT (13kb)

The Riemann Hypothesis
Authors: Tribikram Pati
Comments: latex file comments are welcome
Subj-class: Number Theory; Complex Variables

We give a disproof of the Riemann Hypothesis.
Full-text: PostScript, PDF, or Other formats

发表时间: 2007-03-13, 23:08:23 个人资料

萍踪浪迹


发表文章数: 1051
内力值: 453/453
贡献度: 9137
人气: 1200

客栈长老论坛嘉宾学术成员

Re: 印度人贴出论文说否定了Riemann假设 [文章类型: 原创]

等专家评审结果。等他两年就知道结果了。

漫漫长夜不知晓 日落云寒苦终宵
痴心未悟拈花笑 梦魂飞度同心桥

发表时间: 2007-03-14, 09:56:50 个人资料

一剑一壶酒


发表文章数: 34
内力值: 99/99
贡献度: 69
人气: 21

Re: 印度人贴出论文说否定了Riemann假设 [文章类型: 原创]

请问Tribikram Pati是什么来历?

一把剑,一壶酒,我将何去何从?

发表时间: 2007-03-14, 10:49:50 个人资料

dfj


发表文章数: 186
内力值: 182/182
贡献度: 768
人气: 122

学术成员

Re: 印度人贴出论文说否定了Riemann假设 [文章类型: 原创]

从他的通讯资料看,似乎也有点...民科的味道,参考文献也排列得有点奇怪,当然关键还是内容。

发表时间: 2007-03-14, 21:25:28 个人资料

zdy011235


发表文章数: 21
内力值: 89/89
贡献度: 84
人气: 49

学术成员

Re: 印度人贴出论文说否定了Riemann假设 [文章类型: 混合]

Tribikram Pati
For whatever this may be worth, MathSciNet shows 44 entries for "Items authored by Pati, Tribikram". They are

MR1972007 Dedication.
Analysis and applications (Ujjain, 1999),
v--vii, Narosa, New Delhi, 2002.


MR1970623 (2003k:00013) Analysis and applications.
Proceedings of a conference held in honor of Professor Tribikram Pati on
the occasion of his 70th birthday in Ujjain, 1999.
Edited by H. P. Dikshit and Pawan K. Jain.
Narosa Publishing House, New Delhi, 2002. xii+294 pp. ISBN: 81-7319-470-X


MR1970597 (2004e:40001) Pati, T. Extended Tauberian theorems.
Analysis and applications (Ujjain, 1999),
235--250, Narosa, New Delhi, 2002.


MR1880488 (2003a:40007) Pati, T. On the absolute Cesàro summability of Fourier series.
Indian J. Math. 43 (2001), no. 3, 323--339.


MR1836368 (2002c:40003) Pati, T. On a Tauberian theorem of Hardy and Littlewood.
Proc. Indian Acad. Sci. Math. Sci. 111 (2001), no. 2, 221--227.


MR1795831 (2001i:40004) Pati, T. Generalization of a theorem of Kogbetliantz on absolute
summability.
B. N. Prasad birth centenary commemoration volume, II.
Indian J. Math. 42 (2000), no. 1, 87--106.


MR1780890 Pati, T. On the convergence and summability $(C,1)$ of the Lebesgue-Fourier
series.
B. N. Prasad birth centenary commemoration volume.
Bull. Allahabad Math. Soc. 14 (1999), 95--103.


MR0234166 (38 #2485) Pati, T. A second theorem of consistency for absolute summability by discrete
Riesz means.
K\=odai Math. Sem. Rep. 20 1968 454--457.


MR0177258 (31 #1521) Pati, Tribikram . On the absolute summability of Fourier series by Nörlund means.
Math. Z. 88 1965 244--249.


MR0167779 (29 #5051) Pati, T. ; Ahmad, Z. U. A new proof of a theorem on the absolute summability factors of Fourier
series.
Riv. Mat. Univ. Parma (2) 4 1963 149--158.


MR0157180 (28 #417) Pati, Tribikram . On an unsolved problem in the theory of absolute summability factors of
Fourier series.
Math. Z. 82 1963 106--114.


MR0149193 (26 #6685) Pati, T. On the absolute Nörlund summability of the conjugate series of a
Fourier series.
J. London Math. Soc. 38 1963 204--214.


MR0161068 (28 #4277) Pati, T. ; Ramanujan, M. S. On iteration products preserving absolute convergence.
Boll. Un. Mat. Ital. (3) 17 1962 385--393.


MR0160061 (28 #3275) Pati, T. Effectiveness of absolute summability.
Math. Student 28 1962 177--187 (1962).


MR0155128 (27 #5068) Pati, T. Absolute Cesàro summability factors of infinite series.
Math. Z. 78 1962 293--297.


MR0154004 (27 #3964) Pati, T. ; Lal, S. N. The product of a logarithmic method and the sequence-to-sequence
quasi-Hausdorff method.
Proc. Japan Acad. 38 1962 432--437.


MR0147838 (26 #5351) Pati, T. A generalisation of a theorem of Wang on the summability of Fourier
series.
Indian J. Math. 4 1962 35--45.


MR0140885 (25 #4299) Pati, T. Addendum: "On the absolute Nörlund summability of a Fourier
series".
J. London Math. Soc. 37 1962 256.


MR0160060 (28 #3274) Pati, T. The second theorem of consistency for Riesz boundedness.
Math. Student 29 1961 101--112 (1962).


MR0160059 (28 #3273) Pati, T. A note on the second theorem of consistency for absolute
summability.
Math. Student 29 1961 93--100 (1962).


MR0152822 (27 #2796) Pati, T. The non-absolute summability of Fourier series by a Nörlund
method.
J. Indian Math. Soc. (N.S.) 25 1961 197--214.


MR0150530 (27 #527) Pati, T. A generalization of a theorem of Iyengar on the harmonic summability of
Fourier series.
Indian J. Math. 3 1961 85--90.


MR0138908 (25 #2348) Pati, T. On absolute summability by discrete Riesz means of type ${\rm
exp}\,(n)$ and order $2$.
J. Indian Math. Soc. (N.S.) 25 1961 27--32.


MR0136898 (25 #359) Prasad, B. N. ; Pati, T. On the multiplication of absolutely summable Dirichlet series.
J. Indian Math. Soc. (N.S.) 24 1960 421--431 (1961).


MR0124668 (23 #A1980) Pati, T. ; Ahmad, Z. U. On the absolute summability factors of infinite series. III.
Indian J. Math. 2 1960 73--87.



MR0115039 (22 #5843) Prasad, B. N. ; Pati, T. The second theorem of consistency in the theory of absolute Riesz
summability.
Math. Ann. 140 1960 187--197.


MR0114070 (22 #4900) Pati, T. ; Ahmad, Z. U. On the absolute summability factors of infinite series. II.
Indian J. Math. 2 1960 29--39 (1960).


MR0113066 (22 #3907) Pati, T. Tauberian theorems for absolute Riesz summability.
Indian J. Math. 1 1959 61--68 (1959).


MR0111980 (22 #2838) Pati, T. On the absolute Cesàro summability of Fourier series of functions of
Lebesgue class $L\sp{p}$ and some related problems in the theory of Fourier
constants.
Ann. Mat. Pura Appl. (4) 47 1959 181--195.


MR0104098 (21 #2860) Pati, T. On the absolute Nörlund summability of a Fourier series.
J. London Math. Soc. 34 1959 153--160.


MR0111979 (22 #2837) Pati, T. ; Sinha, S. R. On the absolute summability factors of Fourier series.
Indian J. Math. 1 1958 no. 1 41--54 (1958).




MR0095363 (20 #1866) Pati, T. Products of summability methods and Mercerian transformations.
Proc. Nat. Inst. Sci. India. Part A 23 1957 514--521.


MR0086159 (19,135a) Prasad, B. N. ; Pati, T. On the second theorem of consistency in the theory of absolute Riesz
summability.
Trans. Amer. Math. Soc. 85 (1957), 122--133.


MR0094648 (20 #1161) Pati, Tribikram . Contributions to the study of absolute summability of series.
Bull. Allahabad Univ. Math. Assoc. 17 1956/1957 18--30 (1958).


MR0065667 (16,465d) Pati, T. A Tauberian theorem for absolute summability.
Math. Z. 61, (1954). 75--78.


MR0064889 (16,351e) Pati, T. On the second theorem of consistency in the theory of absolute
summability.
Quart. J. Math., Oxford Ser. (2) 5, (1954). 161--168.


MR0063457 (16,124d) Pati, T. Products of summability methods.
Proc. Nat. Inst. Sci. India 20, (1954). 348--351.


MR0062260 (15,952d) Pati, T. On the absolute Riesz summability of Fourier series and its conjugate
series.
Trans. Amer. Math. Soc. 76, (1954). 351--374.


MR0062247 (15,950e) Pati, T. The summability factors of infinite series.
Duke Math. J. 21, (1954). 271--283.


MR0058004 (15,306f) Pati, T. On the absolute Riesz summability of Fourier series and its conjugate
series.
Bull. Calcutta Math. Soc. 44, (1952). 155--168.


MR0051958 (14,553a) Pati, T. On the absolute summability of the conjugate series of a Fourier
series.
Proc. Amer. Math. Soc. 3, (1952). 852--857.


MR0044440 (13,420j) Pati, Tribikram . The development of non-Euclidean geometry during the last 150
years.
Bull. Allahabad Univ. Math. Assoc. 15, (1951). 1--8.
Professor Tribikram Pati, more popularly known as Prof T Pati, former
Vice-Chancellor of Allahabad University and Shri Jagannath Sanskrit
University, Puri, is the son of Late Prof Ratnakar Pati, an eminent
philosopher, and grandson of 'Utkalmani' Gopabandhu Das, the first president
of the Orissa Congress.

A world famous mathematician, Prof Pati adorned the chair of Head of the
Department of Mathematics and Statistics, Jabalpur University, for about 10
years before holding the same position at AU for almost 19 years.

The 77-year-old scholar believes that he has been able to settle the
mathematical problem of the Riemann Hypothesis, which remained unsolved for
the last 150 years. He has been at it for the last 16 years. Besides, he has
been acclaimed world-wide for solving hundreds of other mathematical
problems. He is such a modest person that he gives credit for all his
achievements to the divine revelations.

A

还是你对

发表时间: 2007-03-20, 00:51:27 个人资料
您尚未登陆 | 用户登陆