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Two massive and one massless Sp„4… monopole

Kimyeong Lee* and Changhai Lu†

Physics Department, Columbia University, New York, New York 10027
~Received 11 September 1997; published 3 March 1998!

Starting from Nahm’s equations, we explore Bogomol’nyi-Prasad-Sommerfield~BPS! magnetic monopoles
in the Yang-Mills-Higgs theory of the gauge group Sp~4!, which is broken to SU(2)3U(1). There exists a
family of BPS field configurations with a purely Abelian magnetic charge that describes two identical massive
monopoles and one massless monopole. We construct the field configurations with axial symmetry by employ-
ing the Atiyah-Drinfeld-Hitchin-Mannin-Nahm construction and find the explicit expression of the metrics for
the 12-dimensional moduli space of Nahm data and its submanifolds.@S0556-2821~98!01408-8#

PACS number~s!: 14.80.Hv, 11.27.1d, 14.40.2n
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I. INTRODUCTION

In this paper we consider the Yang-Mills-Higgs theo
whose gauge symmetry Sp~4! is broken to SU(2)3U(1),
where the Higgs field expectation value lies along one of
short roots. We investigate a family of purely Abelian co
figurations that describes two identical massive monopo
and one massless monopole. We approach the problem
solving Nahm’s equations under proper boundary and c
patibility conditions. By using the Atiyah-Drinfeld-Hitchin
Mannin-Nahm~ADHMN ! construction@1,2#, we construct
the field configurations in spherically and axially symmet
cases. We then calculate the metrics of the 12-dimensi
moduli spaceM12 of Nahm data and its submanifolds. Ge
erally, it is expected that the moduli space of Nahm data
isometric to the moduli space of the corresponding monop
configurations. We examine the metric of the moduli spa
in detail and show that it behaves consistently with wha
expected from the dynamics of monopoles.

Recently, magnetic monopoles have again become a fo
of attention as they play a crucial role in the study of ele
tromagnetic duality in the supersymmetric Yang-Mills the
ries. The relevant magnetic monopole solutions are of
Bogomol’nyi-Prasad-Sommerfield~BPS! type @3#. The
gauge inequivalent field configurations of the BPS monop
solutions are characterized by the moduli parameters as
ated with the zero modes of the solutions. The metric of
moduli space determines the low-energy dynamics of mo
poles@4#. The electromagnetic duality has been explored
studying quantum mechanics on the moduli space of the B
monopoles.

When the gauge group is not maximally broken so t
there is an unbroken non-Abelian gauge symmetry,
moduli space dynamics becomes more subtle because o
global color problem@5#. Nevertheless, it has been know
that the moduli space is well defined when the total magn
charge is purely Abelian@6#. Recently, some such modu
spaces have been studied by starting from the maxi
symmetry-breaking case and restoring the broken symm
partially @7#. From this point of view some magnetic mon

*Electronic address: klee@phys.columbia.edu
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poles become massless, forming a non-Abelian cloud
rounding remaining massive monopoles. The global par
the unbroken gauge symmetry becomes the isometry of
moduli space. The meaning of the moduli space coordina
of massless monopoles changes from their positions
phases to the gauge-invariant cloud structure parameters
the gauge orbit parameters. With an inequivalent symme
breaking Sp(4)→SU(2)3U(1) with the Higgs expectation
along a long root, an Abelian combination is made of o
massive monopole and one massless monopole. This sim
case, where the field configuration and the moduli space m
ric are completely known, was studied in detail to lea
about the non-Abelian cloud@7,8#.

The next nontrivial purely Abelian configurations beyon
this simple model are made of two massive monopoles
one massless monopole. Two massive monopoles can be
tinguished as in the example where SU(4)→U(1)3SU(2)
3U(1). In that case, the so-called Taubian-Calabi metric
the moduli space@7,9,10# is obtained from the massless lim
of that of the maximally broken case@11#. Two massive
monopoles are identical in the cases where SU(3),Sp(4),
and G2→SU(2)3U(1). ~See Tables I and II of Ref.@7#.!
Some time ago the moduli space of three monopoles in
theory where SU(3)→SU(2)3U(1) has been found by
Dancer by exploring the moduli space of Nahm’s da
@12,13#.

Our approach is similar to Dancer’s. We use the emb
ding procedure to construct Sp~4! configurations from SU~4!
configurations. Some of the field configurations are simp
than Dancer’s. Our spherical symmetric solution is just
embedding of the SU~2! solution. A class of our axially sym-
metric solutions can be obtained from a linear superposi
of configurations for two noninteracting monopoles. O
work provides a further illustration of the role of massle
monopoles.

Another motivation for studying the moduli space of co
figurations involving massless monopoles is that it may le
us to some further insight about mesons and baryons
quenched QCD. Even in quenched QCD, nondynamical
ternal quarks are expected to be confined and form mes
and baryons. Suppose that quenched QCD were super
metrized toN54 so that there is no confinement.~Here we
imagine that all supersymmetric partners are very mas
initially and then become light.! If the coupling constant is
5260 © 1998 The American Physical Society
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57 5261TWO MASSIVE AND ONE MASSLESS Sp~4! MONOPOLE
still strong, the resulting configurations of mesons and ba
ons cannot be described by Coulomb potentials as the
linear gauge interaction is not negligible. The non-Abeli
gauge field should somehow form a cloud around exte
quarks, making the whole configuration to be a gauge sin
because of the continuity of the configuration with respec
coupling parameters. The shape of this cloud, which can
regarded as a tensionless cloud, is reminiscent of confi
ment strings that connected the quarks. This can be rega
as the limit where confining string becomes tensionless.

If the electromagnetic duality holds even when the unb
ken gauge symmetry is partially non-Abelian@14#, mesons
and baryons can have their magnetic dual, which are mad
massive and massless monopoles. Indeed massive m
poles play the role of external quarks and massless mo
poles play that of non-Abelian cloud. Thus Abelian config
rations made of two massive monopoles and one mass
monopole can be regarded as dual mesons. More inte
ingly, the moduli space of three massive and three mass
monopoles in the theory of SU(4)→SU(3)3U(1) can be
regarded as a magnetic dual of baryons@15#. The structure of
dual baryons may be similar to a shape of confinem
strings connecting three external quarks.

The plan of this work is as follows. In Sec. II we revie
the method to find Nahm data for the classical group. In S
III we study the symmetry-breaking pattern Sp(4)→SU(2)
3U(1) and solve Nahm’s equations with relevant bound
conditions. In Sec. IV we use the ADHMN method to co
struct the Higgs field configurations in spherically and a
ally symmetric cases. This leads to a general understan
of the parameter space in terms of the size of non-Abe
cloud and the distance between massive monopoles. In
V we find the explicit metrics of the moduli space and
submanifolds. In Sec. VI we conclude with some remark

II. NAHM DATA

The Bogomol’nyi equations satisfied by BPS monopo
can be written as self-dual Yang-Mills equations

Fmn5
1

2
emnrsFrs ~1!

in R4 with coordinatesx1 ,x2 ,x3 ,x4. All the fields of BPS
monopoles here depend only onx1 ,x2 ,x3. Instead, if every-
thing depends only on the complementary variablex45t,
then Eq.~1! leads to the so-called Nahm equations

dAi

dt
1@A4 ,Ai #5

1

2
e i jk@Aj ,Ak#, ~2!

where i , j ,k51,2,3. The solutions of Nahm’s equations s
isfying certain boundary conditions are called Nahm da
We can always perform a gauge transformation to elimin
A4, so sometimesA4 is not included in Nahm’s equations
Nahm’s equations are much easier to solve than the orig
self-dual Yang-Mills equations since they are ordinary d
ferential equations. The relationship between Bogomol’
equations~depend on three variables! and Nahm’s equations
has been thoroughly investigated especially in the SU~2!
gauge group case@2,16#. There is a kind of duality betwee
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d- and (42d)-dimensional self-dual theories@17#. It is also
believed in general that the moduli spaces of Nahm data
BPS monopoles are isometric to each other, which has b
proved in the SU~2! case@18#. The idea is that Nahm’s equa
tions are regarded as an infinite-dimensional moment m
and that the hyperka¨hler quotient @19# of the infinite-
dimensional flat space will lead to the natural hyperka¨hler
metric for the moduli space of Nahm data@18,20#.

The original Nahm method of SU~2! monopoles has bee
generalized into all types of classical groups@2,21#. Let us
start with the SU(N) case since all other groups can b
treated by embedding them into SU(N). Assuming that the
asymptotic Higgs field isf`5diag(m1 , . . . ,mN), with m1
,•••,mN along a given direction, then the Nahm data f
multi-monopoles carrying charge (m1 , . . . ,mN21) are de-
fined asN21 triples (lT1 , lT2 , lT3) ( l 51, . . . ,N21) satis-
fying the following.

~i! For eachl , lTi ( i 51,2,3) are analyticu(ml)-valued
functions satisfying Nahm’s equations in interv
(m l ,m l 11), l 51, . . . ,N21.

~ii ! The boundary conditions relating the Nahm data
two adjoint intervals are the following.

~a! If ml.ml 21, then there exists a nonsingular lim
limt→m

l
2

l 21Ti5
l 21Si and the structure oflTi neart5m l is

lim
t→m l

1

lTi5S l 21Si *

*
lRi

t2m l

D , ~3!

where lRi form an (ml2ml 21)-dimensional irreducible rep
resentation of SU~2! @unlessml2ml 2151, in which case
lRi /(t2m l) has to be replaced by a nonsingular expressi#
and the asterisks refer to the elements that are not intere
in this paper.

~b! If ml,ml 21, the roles of (m l 21 ,m l) and (m l ,m l 11)
are reversed.

~c! If ml5ml 21, the condition is more complicated, bu
fortunately we are not going to confront this situation in th
paper.

The way to embed the cases of SO(N) and Sp(N) into the
SU(N) group is described in Table I@21#. These embedding
procedures are obtained by constraining the SU(N) genera-
tors further. The generatorsT of Sp(N) satisfy the condition
TTJ1JT50 such that JJ* 52I . The generatorsT of
SO(N) satisfy the conditionTTK1KT50 such thatKK*
5I . The explicit forms ofJ,K can be deduced from Table

These embedding procedures enable us to get the SON)
and Sp(N) Nahm data from the SU(N) data with asymptotic
Higgs field f`5diag(m1 , . . . ,mN) and the charge$ml%.
What is different is that we now have one more set of co
ditions connecting the Nahm data between different int
vals.

~iii ! There exist matriceslC ( l 51, . . . ,N21) satisfying

N2 lTi~2t !T5~ lC! lTi~ t !~ lC21! ~4!

and compatibility conditions~a! N2 lC5 lCT for Sp(N) and
~b! N2 lC52 lCT for SO(N). These compatibility conditions
reflect the fact that we are identifying certain SU(N) mono-
poles to get SO(N) and Sp(N) monopoles.



5262 57KIMYEONG LEE AND CHANGHAI LU
TABLE I. Embedding of Sp(N), SO(N), and SU(N).

G G charge f` in SU(N) SU(N) charge

Sp(N) r1 , . . . ,rn m l52m2n112 l ml5m2n2 l5r l

N52n l51, . . . ,n l51, . . . ,n
SO(N) r1 , . . . ,rn22 m l52m2n112 l ml5m2n2 l5r l

N52n r1 ,r2 l 51, . . . ,n l51, . . . ,n22
mn215mn115r11r2

mn52r1

SO(N) r1 , . . . ,rn m l52m2n122 l ml5m2n112 l5r l

N52n11 l 51, . . . ,n11 l 51, . . . ,n21
mn5mn1152rn
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In the above discussion we have assumed thatm1,•••

,mn , which physically means that the gauge symmetry
maximally broken. We can also consider the cases with n
Abelian unbroken symmetry so that somem l ’s are equal;
geometrically this is the case when some of the interv
shrink to zero length. The monopole mass is proportiona
the size of the corresponding interval and so the shrun
intervals correspond to massless monopoles. All the pro
dures described above remain unchanged even in this c

III. NAHM DATA IN THE Sp „4… CASE

The model we consider is the Sp~4! Yang-Mills theory
with a single Higgs field in the adjoint representation and
potential. The vacuum expectation value of the Higgs field
nonzero and the gauge symmetry is spontaneously broke
SU(2)3U(1). The roots and coroots of the Sp~4!5SO~5!
group are shown in Fig. 1. Note that in our conventiona*
5a/uau25a.

In this paper we consider the symmetry breaking w
^F&5h•H along a short rootg. The simple roots we choos
for convenience areb,a rather thand,2a. For any roota,
there is a corresponding SU~2! subalgebra

t1~a!5
1

A2a2
~Ea1E2a!,

t2~a!5
2 i

A2a2
~Ea2E2a!,

t3~a!5a* •H. ~5!

Using this SU~2! algebra, we can embed the SU~2! single
monopole solution along any root. Thus there is a spheric

FIG. 1. Root diagram of Sp~4!.
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symmetric monopole configuration for any roota such that
a•hÞ0 @22#. Sinceb•h.0, the monopole with magnetic
chargeb* is massive.~Here we are dropping the couplin
constant 4p/e.! On the other hand,a* •h50 and so there is
no monopole solution corresponding to the roota. As argued
in the Introduction, the zero mode counting can be do
consistently only for purely Abelian configurations. In o
case the simplest case has the magnetic charge

g* 52b* 1a* , ~6!

so thatg* •a50. The moduli space of this configuration
12 dimensional and denoted byM12. As discussed in Ref
@7#, we imagine theh as a limit whereh•a is positive but
becomes infinitesimal. We can regarda* monopoles as
massless and so theg* monopole can be thought of as
composite of two identical massiveb* monopoles and one
masslessa* monopole. Here we can see that the intern
unbroken gauge group should be SO(3)g rather than SU~2!
because all the generators of Sp(4) transforms as vecto
singlet representations under the unbroken generatorst(a).

If we have chosen the Higgs expectation value to beh8 in
Fig. 1, the unbroken SU~2! would be associated withb. The
Abelian configuration could have the magnetic charged*
5a* 1b* so thatd* •b50. This configuration can be in
terpreted as a composite of one massivea* monopole and
one masslessb* monopole. The BPS field configuration an
eight-dimensional moduli space of this magnetic charge
known explicitly to be flatR4. This is the model that has le
to many insights into non-Abelian cloud@7#.

As discussed in Sec. II, Nahm data for Sp~4! can be stud-
ied by embedding Sp~4! in SU~4!. Thus the Higgs field can
be written as a 434 traceless Hermitian matrix. As shown i
Table I, the Higgs expectation value can be chosen to
^F&5diag(2m1 ,2m2 ,m2 ,m1) with m1>m2>0. Any gen-
erator T of the Sp~4! subgroup should be traceless an
Hermitian and satisfy

TJ1JTT50, ~7!

where the Sp~4! invariant tensorJ is chosen to be
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J5S 0 0 0 1

0 0 1 0

0 21 0 0

21 0 0 0
D . ~8!

This defines the Sp~4! embedding in SU~4! uniquely, which
is also consistent with Table I. A consistent choice of t
Cartan subgroup of Sp~4! is H15diag(21,1,21,1)/2 and
H25diag(21,21,1,1)/2. The two inequivalent symmetry
breaking patterns for Sp(4)→SU(2)3U(1) in Fig. 1 corre-
spond to h•H5diag(21,21,1,1) andh8•H5(21,0,0,1)
5H11H2. Thus our case withm15m250 corresponds to
the case where SU(4)→SU(2)3U(1)3SU(2).

From Table I in Sec. II, we read that our configuration~6!
in Sp~4! has the SU~4! magnetic charge (1,2,1), that is, tw
identical massive monopoles and two distinct mass
monopoles. This is exactly the configuration considered
Houghton@23#, whose focus was on its hyperka¨hler quotient
spaces. If we have chosen the expectation valueh8, the sim-
plest Abelian configurations have the magnetic cha
(1,1,1) in SU~4!, that is, two distinct massive monopoles a
one massless monopole, whose moduli space metric has
found to be the Taubian-Calabi metric@7,9,10#.

According to Sec. II, Nahm dataTm(t) defined on the
interval @21,1# are anti-Hermitian 232 matrices and satisfy
Nahm’s equations

dTi

dt
1@T4 ,Ti #5

1

2
e i jk@Tj ,Tk# ~9!

and the compatibility condition

Tm~2t !T5CTm~ t !C21 ~10!

with a symmetric matrixC. The Nahm data should be an
lytic at the end pointst561. The boundary and compatibi
ity conditions~3! and ~4! satisfied by the above Nahm da
become

@Tm~21!#225@Tm~1!#22. ~11!

This boundary value of Nahm data can be identified with
position of the massless monopole in the center-of-m
frame. A detailed understanding of this boundary condit
will be needed in the case wherea* monopoles become
massive.

The space of Nahm data has the following symmetries~i!
local gauge transformationsG5$g(t)PU(2)%, whose trans-
formations are

T4→gT4g212
dg

dt
g21,

Ti→gTig
21, ~12!

which should be consistent with the conditions~10! and~11!,
and whose subgroup isG05$gPG:g(21)5g(1)51%; ~ii !
the spatial translation groupR3 with three parametersl i ,
e

s
y

e

een

e
ss
n

T4→T4 ,

Tj→Tj2 il j I ; ~13!

and ~iii ! the spatial rotation group Sp(3)5$ai j PSO(3)%,

Ti→(
j

ai j Tj . ~14!

Notice that Eq.~14! is a pure rotation as there is no residue
be fixed att561. @This indicates that the rotational group
SO~3! rather than SU~2!.#

To solve Nahm’s equations together with the compatib
ity condition, we use the spatial translation to makeTm trace-
less. These traceless Nahm data are called centered an
scribe monopole configurations in the center-of-mass fra
We can also choose the gaugeT450. Furthermore, we use
spatial rotation to set thet-independent tr (T1T2), tr (T1T3),
and tr (T2T3) to be zero. After a gauge rotation, we get th
for eachj 51,2,3,

Tj5
1

2
f jej , ~15!

where quaternionsej are chosen so that

e15 i t1 , e25 i t3 , e35 i t2 , ~16!

with Pauli matricest j . Then Nahm’s equations become th
well-known Euler top equations

ḟ 15 f 2f 3 ,

ḟ 25 f 3f 1 ,

ḟ 35 f 1f 2 . ~17!

We note thatf 1
22 f 2

2 and f 2
22 f 3

2 are independent oft. Hence
let us consider the casef 1

2< f 2
2< f 3

2. Then the solution to this
set of equations is known in terms of Jacobi elliptic functio
as

f 152
D cnk@D~ t2t0!#

snk@D~ t2t0!#
,

f 252
D dnk@D~ t2t0!#

snk@D~ t2t0!#
,

f 352
D

snk@D~ t2t0!#
, ~18!

wherekP@0,1# is the elliptic modulus andD,t0 are arbitrary.
We can change the sign of any two off 1 , f 2, andf 3 by 180°
spatial rotations.

On the other hand, the compatibility condition~10! be-
comes, for everyj ,

f j~2t !t j
T5 f j~ t !Ct jC

21, ~19!

with a symmetric matrixC. The boundary condition~11!
becomesf 2(21)5 f 2(1). Among linear combinations oft1
andt3, the right choice forC with Nahm data~15! is
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C5t3 . ~20!

This implies thatf 1 is an odd function andf 2 , f 3 are even
functions.1 This fixes the parametert0 to satisfy cnk(Dt0)
50. Then our solution for Nahm’s equation is

f 15DA12k2
snk~Dt !

cnk~Dt !
,

f 252DA12k2
1

cnk~Dt !
,

f 352D
dnk~Dt !

cnk~Dt !
. ~21!

These Nahm data are regular fortP@21,1#. The analyticity
of the data requires that 0<k<1 and 0<D<K(k) with
4K(k) being the period of snk . K(k) is also the first com-
plete elliptic integralK5*0

p/2du(12k2sin2u)21/2. Equations
~15! and ~21! are the Nahm data we are looking for.@Actu-
ally they are the Nahm data on a representative point of
SO(3)3SO(3) orbit.# Sometimes we will simply call Eq
~21! the Nahm data. There are eight equivalent copies of
above Nahm data: We can exchangef 2 and f 3 or change the
signs of any two off 1 , f 2, and f 3. The allowed local gauge
transformations of Eq.~12! are made ofg(t) such that

g~ t !5ee j ~ t !ej /2 ~22!

with evene1 and odde2 ,e3 functions. This will be crucial in
showing that the spherically symmetric Nahm data are
invariant under global gauge transformations due toe2 ,e3.

The moduli spaceM12 of uncentered three monopoles
the space of gauge inequivalent Nahm data with the ga
actionG0. Since the center U~1! of U~2! is triholomorphic,
we can perform a hyperka¨hler quotient with the momentum
map m52 i (tr T1 ,tr T2 ,tr T3). This gives the eight-
dimensional relative modulus spaceM8 of the centered
Nahm data. A further quotient of this manifold by the inte
nal gauge symmetry SU~2! leads to the five-dimensiona
manifold N55M8/SU(2). The homeomorphic coordinate
for N5 are given in terms of gauge-invariantt-independent
quantities@12#

l15^T1 ,T1&2^T2 ,T2&,

l25^T1 ,T1&2^T3 ,T3&,

l35^T1 ,T2&,

l45^T1 ,T3&,

l55^T2 ,T3&, ~23!

where

1Thus the generic form of the Nahm data would be given byTm

5Tmnen with e451. Tm4 are independent oft, Tm1 are odd func-
tions of t, andTm2 andTm3 are even functions.
e

e

t

ge

^T,T8&52E
21

1

dt tr ~TT8!. ~24!

They form a real traceless 333 matrix and realize a five-
dimensional representation of SO~3!. The data~21! lead to
the coordinates

l152~12k2!D2,

l252D2, ~25!

andl35l45l550, which is invariant under the 180° rota
tions around three Cartesian axes. Thus these data ha
Z23Z2 isotropy group.N5 is a five-dimensional manifold
homeomorphic toR5 and admits a nonfree rotational SO~3!
action. A further quotient of this manifold by the spati
rotation group SO~3! leads to a two-dimensional surfac
N5/SO(3),whose eight copies, as we will argue in Sec.
make a geodesic complete manifoldY2. There are also two-
dimensional surfaces of revolution, which describe axia
symmetric configurations.

Since the gauge group SU~2! is triholomorphic, there is
another hyperka¨hler quotient ofM8. When the gauge sym
metry is maximally broken, there is still an unbroken U~1! in
the center-of-mass frame. We can use this U~1! to construct
the hyperka¨hler quotient. With our choice of the boundar
condition ~11! and quaternions~16!, a convenient choice o
this U~1! subgroup is one generated byt3. ~Other choices are
gauge equivalent to this choice.! This U~1! group acts freely
as the corresponding gauge parametere2 in Eq. ~22! is an
odd function. The corresponding moment map is

m5 i @ tr T1~1!t3#,tr @T2~1!t3#,tr @T3~1!t3#. ~26!

The valuez j of this moment map is then

z j52 i @Tj~1!#22 ~27!

and can be interpreted as the position of the massless m
pole. The hyperka¨hler quotient spaceM4(z)5m21(z)/U(1)
is a four-dimensional hyperka¨hler space. The rotationa
transformation SO(3)5$ai j % generates a homeomorph
mapping fromM4(z i) to M4(ai j z j ). ~Under a gauge trans
formation of Nahm data, the moment map transforms n
trivially. The gauge orbit of the positionz of the massless
monopole will be shown to be an ellipsoid.! This family will
be shown to interpolate the flat spaceM4(0)5R33S1 to the
Atiyah-Hitchin spaceM4(`). Since any hyperka¨hler space
in four dimensions is self-dual and so Ricci flat,M4(z) can
be regarded as a one-parameter family of gravitational
stantons.

IV. ADHMN CONSTRUCTION

For given Nahm data, we can define a differential ope
tor

L†~x!5 i
d

dt
2(

i 51

3

~ iT j1xj ! ^ ej , ~28!

whereej ( j 51,2,3) are quaternion units. The dimension
the kernel ofL† depends on the boundary conditions i
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volved in defining Nahm dataTi . For our case it turns out to
be four. The basis of KerL† consists of four orthonorma
four-component vectorsvm ,m51,•••,4 with the inner prod-
ucts^vm ,vn&5*21

1 dt vm
†
•vn5dmn . In terms of the 434 ma-

trix V5(v1 ,v2 ,v3 ,v4), the ADHMN construction of mono-
pole solutions inR3 goes as follows: The 434 Hermitian
matrix-valued fields

F5E
21

1

dt tV†V, ~29!

Aj5 i E
21

1

dt V†
]V

]xj
~30!

form a BPS monopole field configuration. It is really a co
figuration in SU~4! gauge theory and may need a furth
gauge transformation in SU~4! to be expressed as a prop
Sp~4! configuration.

We express a single four vector asv5(w1 ,w2 ,w3 ,w4)T.
Since the ADHMN construction is invariant under consta
gauge transformations of Nahm data, we can rotatee1 ,e2 ,e3
to bee2 ,e3 ,e1, respectively. Then the equationL†v50 can
be written in the same form as those in Ref.@13#:

ẇ12x1w12~x32 ix2!w31
1

2
f 1w11

1

2
~ f 32 f 2!w450,

ẇ22x1w22~x32 ix2!w42
1

2
f 1w21

1

2
~ f 21 f 3!w350,

ẇ31x1w32~x31 ix2!w12
1

2
f 1w31

1

2
~ f 21 f 3!w250,

ẇ41x1w42~x31 ix2!w21
1

2
f 1w41

1

2
~ f 32 f 2!w150.

~31!

It is hard to obtain general solutions of the above equatio
In this section we would like to work out several spec
cases in order to check whether the ADHMN construct
leads to the sensible result. This exercise also yields a
eral understanding of the physical meaning of parametek
andD appearing in Nahm data.

The first case we consider is the spherically symme
solution withD50 and so

f 15 f 25 f 350. ~32!

Clearly these Nahm data are invariant under the spa
SO~3! rotation ~14!. One may wonder whether these Nah
data are invariant under global gauge transformations~12!.
The above dataTi50, are invariant under the global SO~3!
gauge rotation~12!. However, the initialT450 is not neces-
sarily invariant. The reason is that the gauge parame
e2 ,e2 of Eq. ~22! are odd functions and so their time deriv
tive does not vanish. However,e1 is even and so can b
constant, leavingT0 invariant. Thus one expects aS2 gauge
orbit space for the spherically symmetric solution. This tw
sphere will also appear in the metric of the modulus spac
Sec. V.@In Dancer’s case, the spherically symmetric soluti
-

t

s.
l
n
n-

c

al

rs

-
in

is not invariant for all three generators of the SU~2! gauge
rotation and so the gauge orbit isS3.#

The kernel equations~31! can be easily solved for the
spherically symmetric solution and give rise to the Hig
field

F52H~2r ! r̂•t~g!, ~33!

where r 5Axixi , r̂ i5xi /r , and H(r )5coth(r)21/r . This is
the well-known single-monopole solution withF`}H2
along thex3 direction. This configuration is the SU~2! em-
bedded solution along the composite rootg. The energy den-
sity is maximized at the center. We just argued that the c
responding Nahm data are not invariant under some of
global gauge transformations. To understand this in term
the field configuration, we deduce from the root diagram
Fig. 1 that the generatorst i(g) commute witht3(a), but not
with t1,2(a). Thus the spherically symmetric field configur
tion is not invariant under two oft i(a), consistent with the
previous argument.

We now turn to the axially symmetric cases. Similar
Dancer’s case, we have two axially symmetric cases.
hyperbolic case appears whenk51 and 0<D,`, so that

f 15 f 250, f 35D. ~34!

These Nahm data are invariant under rotation around thex3
axis. Although no hyperbolic function is involved here, w
have used the same terminology as used as in Ref.@12# be-
cause of a similarity in their qualitative behavior. The trig
nometric case appears whenk50, so that

f 15D tan~Dt !, f 25 f 352D sec~Dt !, ~35!

with 0<D,/p/2. These data are invariant under the ro
tion around thex1 axis.

Our hyperbolic case is much simpler than the correspo
ing case considered by Dancer. After solving Eq.~31!, we
use Eq.~29! and a gauge transformation to obtain the Hig
configuration

F52H~2r 1! r̂1•t~b!12H~2r 2! r̂2•t~d!, ~36!

where r65(x1 ,x2 ,x36D/2). We recognize that this con
figuration describesb* and d* monopoles located atx35
2D/2 and x35D/2, respectively. Since@ t i(b),t j (d)#50,
there is no direct interaction between these two monopo
and the field configuration~36! is just a superposition of two
corresponding configurations. In Dancer’s hyperbolic ca
two massive monopoles are interacting.

The above hyperbolic configuration is not invariant und
global gauge rotations oft(a) as it does not commute with
t(b) and t(d). Among the dyonic excitations, there is
simple one that is just a superposition ofb* andd* dyons.
Once the magnitudes of their electric charges are not ide
cal, their relative charge is nonzero. This corresponds to
excitation due to thet3(a) rotation. Clearly, this configura
tion would preserve the axial symmetry. In Sec. V the m
tion that changesD and this relative charge will be describe
by a flat two-dimensional surface of revolution. Especia
the configuration with relative electric charge is spherica
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5266 57KIMYEONG LEE AND CHANGHAI LU
symmetric whenD50, which is consistent with the fact tha
the spherically symmetric solution is not invariant under
global gauge rotations.

On the other hand, our trigonometric case~35! is more
complicated. Equation~31! at (z,0,0) becomes

ẇ12zw11
1

2
D tan~Dt !w150, ~37!

ẇ22zw22
1

2
D tan~Dt !w22D sec~Dt !w350, ~38!

ẇ31zw32
1

2
D tan~Dt !w32D sec~Dt !w250, ~39!

ẇ41zw41
1

2
D tan~Dt !w450. ~40!

Notice that Eqs.~37! and~40! are not coupled with anything
else, while Eqs.~38! and~39! are only coupled among them
selves. Thus, after an SU~4! gauge transformation the Higg
field has the form

F5S * 0 0 *

0 * 0 0

0 0 * 0

* 0 0 *

D , ~41!

where an asterisk indicates a nonvanishing entry. Si
FTJ1JF50 with J in Eq. ~8!, we get F3352F22 and
F4452F11. From Eq.~37! we can easily obtain

F2252
f ~z!2 f ~2z!

g~z!1g~2z!
, ~42!

where

f ~z!5e2z$@~2z11!D214z2~2z21!#cosD

1D@D214z~z21!#sin D%, ~43!

g~z!5e2z~D214z2!~2z cosD1D sin D !. ~44!

We are not going to pursue the details for the corner 232
matrix part ofF, which describes the non-Abelian part. Lik
in the case of Ref.@12#, we believe that the trigonometri
data correspond to the situation when the energy densi
maximized on a ring around the axis of symmetry, ev
though we have not done the numerical computation
check this. WhenD50, the configuration is spherically sym
metric. WhenD→p/2, we will see in a moment that ou
result approaches the Atiyah-Hitchin case. That case, w
axially symmetric, has a ringlike energy distribution. Th
symmetry and continuity imply the ringlike energy distrib
tion for the trigonometric case.

At the limit D→p/2, Eq. ~42! becomes

F2252F tanh~2z!2
z

z21S p

4 D 2G , ~45!
e

e

is
n
o

en

which is exactly the result of two SU~2! monopoles@24#.
Meanwhile Eqs.~38! and~39! lead toF1152F44521 and
F145F4150 atD5p/2. Thus the Higgs field~41! along the
symmetric axis becomes the Higgs field for charge tw
SU~2!-monopole configuration.

As a general verification of the suggestion made abo
let us check whether the three-monopole case degene
into the SU~2! result whenk50, D5p/2, or more generally
D→K(k). In this limit, Nahm data~21! approach

f 1 , f 2 , f 3'2
1

11t
~46!

neart521 and

2 f 1 , f 2 , f 3'2
1

12t
~47!

near t51. These are exactly the boundary conditions sa
fied by Nahm data for two identical monopoles in the SU~2!
case@2,16#.

This is a good place to introduce a geometric picture
the non-Abelian cloud. The boundary value~11! is identified
with the position ~27! of the massless monopole in th
center-of-mass frame. The positionz of the massless mono
pole changes under the gauge transformation~22!. For an
SU~2! transformationg(t) such thatg21(1)eig(1)5Ri j ej ,
z i5 f iRi2. Thus the SU~2! orbit of the position~27! would
be an ellipsoid defined by

z1
2

f 1~1!2
1

z2
2

f 2~1!2
1

z3
2

f 3~1!2
51. ~48!

The size of this ellipsoid would indicate the size of the no
Abelian cloud@7#. @The ellipsoid for Dancer’s case is sim
larly given with f i(3) replacingf i(1). This ellipsoid for the
spherically symmetric solution has nonzero size.#

For the spherically symmetric solution withD50, this
ellipsoid collapses to a point at origin, indicating that t
massless monopole is at the origin. Indeed, it is consis
with the picture that all magnetic charges lie at the origin
this solution. For the hyperbolic solution withk51, this el-
lipsoid collapses into a line connecting twob* monopoles.
Especially when thea* monopole lies at the end, it is
superposition ofb* andd* monopoles. For the trigonomet
ric case withk50, the ellipsoid becomes axially symmetr
around thex1 direction. In the Atiyah-Hitchin limit D
→K(k), the size of this ellipsoid becomes infinite, implyin
that the massless monopole has been sent to spatial infi

From this analysis of various limits, a fairly consiste
meaning of two parametersk andD emerges. When we ex
amine the moduli space metric in the next section, we w
see that a somewhat richer picture emerges. Figure 2 sh
the k-D space. The spherically symmetric case correspo
to the lineD50. The trigonometric case lies on the linek
50 and 0,D,p/2 and the hyperbolic case lies on the lin
k51. The Atiyah-Hitchin case corresponds to the curveD
5K(k).
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V. MODULI SPACE METRIC

Now let us turn our attention to the metric of the mod
space. By using centered Nahm data, we work in the cen
of-mass frame of monopoles. The relative moduli spaceM8

of Nahm data should isometrically correspond to the rela
moduli space of the monopole dynamics. The metric for
center-of-mass motion is flat and we expect that

M125R33
S13M8

D
, ~49!

where D is a discrete subgroup, about which we are n
concerned here. Our work of finding the moduli space me
is greatly facilitated by the works done by Dancer@12# and
Irwin @25#. Their general derivation works equally well wit
our problem. However, our detailed results are different fr
theirs. For the sake of completeness, we present their de
tion more explicitly as the way applied to our case.

To calculate the metric of the relative moduli spaceM8,
let us define tangent vectors ofM8. A tangent vectorY
5(Y1 ,Y2 ,Y3 ,Y4) must satisfy the linearized Nahm’s equ
tions

Ẏi1@Y4 ,Ti #1@T4 ,Yi #5e i jk@Tj ,Yk#. ~50!

Since the moduli spaceM8 is defined by gauge-equivalen
Nahm data, the tangent vector should be orthogonal to in
tesimal gauge transformationsdTm in G0, that is,

(
m51

4

^Ym ,dTm&50, ~51!

where the orthogonality is defined with the flat metric on t
infinite-dimensional affine space@18,20#

ds2~Y,Y8!5(
m

^Ym ,Ym8 &. ~52!

Thus Eq.~51! takes an explicit form

Ẏ41 (
m51

4

@Tm ,Ym#50. ~53!

The procedure of solving Eqs.~50! and ~53! for tangent
vectors has been described in Ref.@12#. In general,Ym can
be expressed asYm5ym j (ej /2). Substituting this expressio
into Eqs.~50! and ~53!, we get four linear differential equa

FIG. 2. k-D space.
r-

e
e

t
ic

a-

i-

tions, whose nonsingular solutions for Nahm data~21!,
parametrized by eight real parametersmm ,nm , are

Y15
1

2F ḟ 1I 1e11S ḟ 2I 21
m2

f 2
De21S ḟ 3I 31

n3

f 3
De3G ,

Y25
1

2F2 ḟ 1I 2e11S ḟ 2I 11
m1

f 2
De22S ḟ 3I 41

n4

f 3
De3G ,

Y35
1

2F2 ḟ 1I 3e11S ḟ 2I 41
m4

f 2
De21S ḟ 3I 11

n1

f 3
De3G ,

Y45
1

2F ḟ 1I 4e11S ḟ 2I 31
m3

f 2
De22S ḟ 3I 21

n2

f 3
De3G , ~54!

where

I m~ t !5E
0

t

dt8 S mm

f 2~ t8!2
1

nm

f 3~ t8!2D . ~55!

The lower bound ofI m(t) is chosen so that they are od
functions. This makesYm satisfy the compatibility condition
Ym(2t)T5CYm(t)C21, which is implied from Eq.~10!.

The metric on the moduli spaceM8 is induced from the
flat metric ~52! on the infinite-dimensional affine algebra
With our solutions~54!, the general result is

ds2~Y,Y8!5 (
m51

4

@~g11g1
2X!mmmm8 1~g21g2

2X!nmnm8

1g1g2X~mmnm8 1nmmm8 !#, ~56!

where

X~k,D !5 f 1~1! f 2~1! f 3~1!,

g1~k,D !5E
0

1 dt

f 2~ t !2
,

g2~k,D !5E
0

1 dt

f 3~ t !2
. ~57!

We can calculate the metric by finding the tangent vec
at a generic point ofM8, which can be obtained by th
SO(3)3SO(3) spatial and gauge rotations of Nahm d
~21!. Due to the SO(3)3SO(3) symmetry of the metric, the
general metric can be found if it is known near the identi
We want to relate the coordinatesmm ,nm of the tangent
space at the specific point to the infinitesimal changes of
parametersk,D and the infinitesimal SO(3)3SO(3) trans-
formations@25#. This corresponds basically the rotation of
rigid body around three principal axes. Similar to the rigi
body case, we can find the metric once we know the mom
of inertia around each principal axis, which are the coor
nate axes for our Nahm data~15! and ~21! @12#. The kinetic
part for the rigid-body case is expressed in terms of the
invariant one-forms
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s152sin c du1cosc sin u dw,

s25cosc du1sin c sin u dw,

s35dc1cosu dw, ~58!

which correspond to the infinitesimal spatial rotations arou
three principal axes. The corresponding left-invariant o
forms for the gauge rotations are denoted asš i . The rela-
tions we seek are

m152
1

2
dl1 ,

n152
1

2
dl2 ,

m25l1s3 ,

n252
g1l1

11g2X
s31

1

Ag21g2
2X

H b3s32c3S f 1~1!

f 2~1!
s32š3D J ,

m35
g2l2

11g1X
s22

1

Ag11g1
2X

H b2s22c2S f 1~1!

f 3~1!
s22š2D J ,

n352l2s2 ,

m452
g2~l12l2!

g11g2
s12

1

A~g11g2!„11~g11g2!X…

3H b1s12c1S f 3~1!

f 2~1!
s12š1D J ,

n45
g1~l12l2!

g11g2
s12

1

A~g11g2!„11~g11g2!X…

3H b1s12c1S f 3~1!

f 2~2!
s12š1D J , ~59!

wherel1 ,l2 are given in Eq.~25!,

b15k2D2A g1
2

~g11g2!„11~g11g2!X…

,

b25
g2D2

Ag11g1
2X

,

b35
g1~12k2!D2

Ag21g2
2X

~60!

and
d
-

c15 f 2~1! f 3~1!A g11g2

11~g11g2!X
,

c25
Ag11g1

2X

f 2~1!g1
,

c35
Ag21g2

2X

f 3~1!g2
. ~61!

Once we replaced the parametrization~59! into the metric
~56!, we would have obtained the explicit form for the metr
of the moduli spaceM8. Rather, let us study the metric ste
by step. The two-dimensional spaceY2 is the geodesically
complete space made of eight copies of thek-D space,
N5/Sp(3), asdiscussed after Eq.~21!. This space describe
the motion of the monopoles with the vanishing SU~2! elec-
tric charge and zero angular momentum. The metric of t
space obtained from Eqs.~25!, ~56!, and~59! is

dsY2
2

5
1

4
$X~g1dl11g2dl2!21g1dl1

21g2dl2
2%. ~62!

Figure 3 shows this space in terms of two coordinates, wh
in the shaded region areD and E[A12k2D. The above
metric at origin is smooth withD,E playing Cartesian coor-
dinates. The origin corresponds to the spherically symme
configuration. Two coordinate axes correspond to two hyp
bolic configurations, which are symmetric along real spa
x2 ,x3 coordinate axes. The diagonal lines correspond to
trigonometric one, which is symmetric along the real spa
x1 axis. The boundary curves correspond to the Atiya
Hitchin configurations, where the massless monopole
been moved to spatial infinity.

While we have not studied in detail the geodesic mot
on this space, one can see from symmetry that the trigo
metric solutions with velocity pointing to the origin will re
main trigonometric after the configuration passes through
origin. With a similar velocity, the hyperbolic solutions wi
remain hyperbolic, which is consistent with the view th
two monopoles without gauge charge do not interact for t
case. This is in contrast with Dancer’s case where the tri
nometric configuration changes to the hyperbolic one a
vice versa. When the cloud size becomes large, the confi

FIG. 3. Sketch of the geodesically complete space inD-E co-
ordinates. The shaded region corresponds to theN5/SO(3) space.
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ration would approach the Atiyah-Hitchin configuration a
the boundary curve shows the 90° scattering of these mo
poles.

The metric onN55M8/SU(2) with theZ23Z2 isotropic
group is

dsN5
2

5dsY2
2

1a1s1
21a2s2

21a3s3
2 , ~63!

with

a15k4D4
g1g2

g11g2
,

a25D4H g21
g2

2X

11g1XJ ,

a35~12k2!2D4H g11
g1

2X

11g2XJ . ~64!

Here one uses the orthogonality condition for the tangen
vectors ofN5 to that of gauge rotation@12,25#, which can be
found from Eq.~59! by dropping terms depending onbi and
ci . There is no cross term for the invariant one-forms, wh
is consistent withZ23Z2 isotropy group ofN5. This metric
describes the monopole dynamics with zero SU~2! gauge
charge, perhaps with nonzero orbital angular moment
Figure 4 shows two massive monopoles~two half doughnuts
on thex3 axis! with generic cloud size and three princip
axes. In zero cloud sizek51, the metric is symmetric unde
the rotation around thex3 axis so thata15a2 anda350. In
the trigonometric casek50, the metric is symmetric unde
the rotation around thex1 axis so thata150 anda25a3.

The distance between two massive monopoles is defi
up to the monopole core size. We guess this distancer
'Aa1'Aa2 because the moment of inertia for a point pa
ticle would be mass times the square of distance from
origin. We will see later that the above approximation is tr
when the non-Abelian cloud size is very small or very larg

From Eqs.~56! and ~59! we get the full metric onM8,
which is

FIG. 4. Massive monopole with a finite-size cloud. The cent
doughnut indicates the symmetric axisx1.
o-
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dsM8
2

5
1

4
$X~g1dl11g2dl2!21g1dl1

21g2dl2
2%1a1s1

2

1a2s2
21a3s3

21H b1s12c1S f 3~1!

f 2~1!
s12š1D J 2

1H b2s22c2S f 1~1!

f 3~1!
s22š2D J 2

1H b3s32c3S f 1~1!

f 2~1!
s32š3D J 2

. ~65!

This metric is hyperka¨hler. The isometric group is SO(3
3SO(3). The SO~3! global gauge transformations are trih
lomorphic and the SO~3! spatial rotations rotate three com
plex structures of the manifold. There are several interes
limits of this metric. When the cloud size is smallest wi
k51, its Nahm data are the hyperbolic case~34! and the
above metric becomes

dshyper
2 5dD21D2s1

21D2s2
21D tanhD š1

21D coth D š2
2

1š3
2 . ~66!

The moments of inertia for internal gauge transformatio
are nonzero exactly as we argued in Sec. IV. Especially
spherically symmetric case withD50, the coefficient ofš1

vanishes, but those ofš2 and š3 are nonvanishing and be
come identical, implying theS2 gauge orbit space. In larg
separationD@1, the inertia forš1 andš2 become identical.
The inertia forš3 is constant, which corresponds tot3(a)
dyonic excitations discussed in the paragraph after Eq.~36!.
We also see thatAa25Aa25D is indeed the distance be
tween two massive monopoles.

When the distance between twob* monopoles is small-
est, its Nahm data are the trigonometric case~35!. In this
case the metric~66! takes a rather complicated form. Whil
the explicit formula can be obtained easily, we will n
bother to write it down here. We simply note that the m
ments of inertia alongx2 and x3 axes are identical becaus
the trigonometric configurations are symmetric under ro
tion around thex1 axis.

There are two types of surface of evolution, correspo
ing to the hyperbolic and trigonometric cases. When we
clude internal global gauge rotations that preserve the a
symmetry, we obtain two-dimensional surfaces of revo
tion. The two-dimensional metric for the trigonometric ca
with k50 is

dstrig2
2 5sec2D ~11D tanD !S 11

sin 2D

2D D
3FdD21

D2~s12š1!2

~11D tanD !2G , ~67!

wheres12š1 can be put into a rotationda. As D→p/2, the
metric ~67! becomes

ds25dr21
1

4
r2da2, ~68!

l
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wherer52Ap/(p22D). In this limit the massless mono
pole moves out from localized massive monopoles and so
non-Abelian cloud is expected to become more spher
with the flatR4 moduli space as in Ref.@7#. The above met-
ric is then a section ofR4 with a radial variabler as we will
see in a moment. In the physical space, the massless c
size is of orderr2. The non-Abelian component of the gaug
field will change its behavior from 1/r to 1/r 2 as one crosse
this radiusr2. Another axially symmetric case is hyperbol
one withk51,0,D,`, whose metric is

dshyper2
2 5dD21š3

2 . ~69!

Clearly this flat metric is a part of the metric~66!.
The limit of large cloud size can be found in the regi

whereK(k)2D!1. In Sec. IV, we argued that Nahm da
in this case approach those for the Atiyah-Hitchin case
this limit one can show easily that the metric~65! becomes

ds25dr21
r2

4
$~s12š1!21~s21š2!21~s31š3!2%

1
b2

K2
dK21a2s1

21b2s2
21c2s3

21O~r21!, ~70!

wherer52AD/(K2D) and

a25
K~K2E!@E2~12k2!K#

E
, ~71!

b25
EK~K2E!

E2~12k2!K
, ~72!

c25
EK@E2~12k2!K#

K2E
, ~73!

with the second complete elliptic integral E
5*0

p/2duA12k2sin2u. This shows that the asymptotic spa
is a direct product ofR4 and the Atiyah-Hitchin space. As in
Ref. @7#, we expect that the metric of the massless clo
space approaches that of flatR4, which is exactly what the
above limit shows. A combination of orbital and gauge a
gular variables needs to be introduced@25# to make thisR4

explicit. We note thatAa15a and Aa25b. The distance
between two massive monopoles is given approximately
r'a'b'2 lnA12k2 @20#.

The part of the modulus space metric we can calcu
independently from Nahm’s formalism is the asympto
metric, which is valid when the mutual distances betwe
monopoles are large. This can be done by studying the in
action between dyons in large separation@26,11# and taking
the massless limit. In the center-of-mass frame, the rela
positions between the massiveb* monopoles and the mass
less a* monopole arer1 and r2 as shown in Fig. 5. The
relative position between two massive monopoles isr5r1
1r2.
he
al

ud

n

d

-

s

te

n
r-

e

In terms of the relative positions and the relative ang
ca ,a51,2, the asymptotic form of the metric for the relativ
moduli spaceM8 is

ds25(
a,b

2

@Gabdra•drb1~G21!abDcaDcb#, ~74!

where

Gab5S 112e

11e
1

1

r 1
2

1

r

1

11e
2

1

r

1

11e
2

1

r

112e

11e
1

1

r 2
2

1

r

D , ~75!

Dca5dca1w~ra!•dra2w~r !•dr , ~76!

with the Dirac potentialw such that¹3w(r )5¹(1/r ). Here,
for the sake of later use, we have introduced a paramete
that is propotional to the ratio of thea* monopole mass and
b* monopole mass. The limit wherea* monopoles become
massless is thene→01. If we have removed the direct in
teraction between two identical massive monopoles,
above metric is identical to the Taubian-Calabi metric of t
SU(4)→U(1)3SU(2)3U(1) case. Since the non-Abelia
cloud of a massless monopole is independent of the di
interaction, the SU~2! orbit on the non-Abelian cloud would
again be the three-dimensional ellipsoid defined
r 11r 25const, as shown in Fig. 5. This ellipsoid would b
the limit of the ellipsoid~48!, where it becomes symmetri
around thex3 axis. This fact can be seen easily by adapti
the argument for the SU~4! case in Ref.@7#. In the large
cloud size limit, one can compare the exact metric~65! and
the above one. We seeK/(K2D)'r 11r 2 and r'K(k)'
2 lnA12k2. The conditionr 11r 2@r for the large cloud size
becomesK(k)2D!1.

Now we are in position to learn more about the fou
dimensional spaceM4(z) defined by the moment map~26!
generated from thet3 U~1!. For Nahm data~15! and~21! we
get z5(0,z,0) with

z5DA12k2
1

cnk~D !
. ~77!

The general Nahm data are obtained from that in Eq.~21! by
spatial and gauge rotations. Thusz would be a function of
rotational and gauge parameters. With our choice of U~1!

FIG. 5. Parameters of the asymptotic metric. The center of m
is at the middle of the line connecting two massiveb* monopoles.
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and the Nahm data~21!, it is easy to find the quotient spac
M4(z)5m21(z)/U(1) at z50, which corresponds tok51
from Eq. ~77!. This corresponds to the hyperbolic data~34!
with the minimal size of non-Abelian cloud. The modu
space metric is that~66! for the hyperbolic data. Among
them, the gauge rotation byt1 changesz away from zero and
so the correspondingš1 part should be dropped. Dividing b
the U~1! group oft3 implies dropping theš2 term from the
metric. The resulting four-dimensional space is the flatR3

3S1 with the metric

ds25dD21D2~s1
21s2

2!1š3
2 . ~78!

On the other hand, whenz5`, we haveD5K(k), which
means that the massless monopole has been removed, r
ing in the Atiyah-Hitchin metric. Thus we see thatM4(z)
interpolates betweenM4(0)5R33S1 and the Atiyah-
Hitchin spaceM4(`).

We find another argument for the above result~78! by
considering the asymptotic form of the metric~74!. Among
two conserved U~1! generated byca→ca1da , the relative
electric charge of two massive monopoles, which gener
ca→ca1d, is not conserved when the short-distance corr
tion is included. However, the difference between to
charge of twob* monopoles and that of ana* monopole,
which generates the transformationc1→c11d and c2
→c22d, will remain exact even when a short distance c
rection is included. The moment map of this U~1! symmetry,
which can be obtained easily from the hyperka¨hler one-
forms @26,9#, is

z5
r12r2

2
. ~79!

This is the position of the massless monopole as show
Fig. 5. ~Even in the maximally broken case, the above m
ment map is correct.! As z increases from zero to infinity, th
size of the non-Abelian cloud increases from zero to infin
consistent with the picture discussed in the preceding p
graph. Also, we can trivially obtain the asymptotic form
the metric forM4(z),

ds25G dr21G21~dc1W•dr !2, ~80!

where

G511
1

2ur12zu
1

1

2ur22zu
2

1

ur u
~81!

andW is decided from the relation¹G5¹3W. Clearly, this
asympototic form is hyperka¨hler, as it satisfies the conditio
for the toric hyperka¨hler space@26#. This metric is correct
whether or not thea* monopole is massless. In massle
case, this hyperka¨hler quotient can be obtained by holdin
the position of the massless monopole atz relative to the
center of mass and let massive monopoles move around
teracting with each other and with the massless monopole
massive case, we are holding thez. The position of the cente
of mass would lie between the position of thea* monopole
ult-

es
-
l

-

in
-

,
a-

s

in-
In

and the middle of line connecting twob* monopoles.2 When
z50, the metric~80! becomes the flat metric~78!.

VI. CONCLUSION

We have studied a purely Abelian BPS monopole co
figuration made of two identical massive monopoles and
massless monopole in the theory where the gauge gr
Sp~4! is spontaneously broken to SU(2)3U(1) along a short
root. We approached this problem by finding the solutio
for the corresponding Nahm equations under proper bou
ary and compatibility conditions. We have used the ADHM
construction to get the spherically and axially symmet
field configurations, which are consistent with the fie
theory picture. From the analysis of the axially symmet
solutions, we have come to understand the role of the n
Abelian cloud and its size. Then the explicit form of th
metric on the eight-dimensional moduli space of relative m
tion is found. By studying the metric in various limits, w
see that this metric for the moduli space of the Nahm dat
shown to be consistent with what is expected from the mo
pole dynamics.

We have also studied the metric of various submanifo
of this space. Our work provides further support to the id
that Nahm’s approach for the BPS monopole configurati
and their modulus spaces is valid in general. Our work le
also to some insight into the characteristics of the n
Abelian cloud and the gauge orbit. It is interesting to no
that the spherically symmetric solution has nonzero ine
for some unbroken gauge transformations.

From the previous experiences we now see how in p
ciple one may find the moduli space metric of two identic
massive and one massless monopoles in the theory withG2
→SU(2)3U(1). To getthis one may start from the theor
with SO(8)→SU(2)33U(1) with two identical massive and
three distinct massless monopoles. If one identifies t
massless monopoles, then the configuration would be tha
two massive and two distinct massless monopoles in
theory with SO(7)→SU(2)23U(1). After further identifi-
cation of all massless monopoles, one would get the des
configuration in the theory withG2.

The hyperka¨hler quotient of the eight-dimensional relativ
moduli spaces of these configurations is a four-dimensio
hyperkähler space. To find theM4(z50) one can conside
the asymptotic form of the metric for two massive mon
poles with a minimum size cloud.~We overlap the massles
monopole on one of the massive monopoles.! They areR3

3S1, Taub–Newman-Unti-Tamburine~NUT! or a double
covering of Atiyah and Hitchin, depending on whether th
are associated with the gauge group Sp~4!, G2, or SU~3!,
respectively. When the cloud size becomes large, all th

2A somewhat different approach has been taken in Ref.@22#.
There the quotient space for Dancer’s case is obtained by taking
infinite mass limit of the correspondinga* monopole. This fixes
the absolute position of thea* monopole rather thanz, which is its
position relative to the center of mass of two massiveb* mono-
poles. The resulting quotient metric seems not to be hyperka¨hler, as
it does not conform to the generic metric for toric hyperka¨hler
spaces.
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four-dimensional spaces approach the Atiyah-Hitchin spa
Another direction to explore is to find the moduli space

the case whena* monopoles become massive so that th
are two identical massive monopoles and one distinct m
sive monopole. We think that the moduli space in the the
where Sp(4)→U(1)2 is simpler than the similar problem i
the theory with SU(3)→U(1)2. Also this moduli space has
role to play in theN52 S duality @27#. Finding the moduli
space will be a challenge. Finally, it would be very intere
ing to find some structure of the moduli space of three m
sive and three massless monopoles in the theory w
SU(4)→SU(3)3U(1). We know the asymptotic form of
,

er

,
-

th
e.

e
s-
y

-
s-
re

the metric and it may be good enough. As argued in
Introduction, these configurations can be regarded as a m
netic dual of baryons and might lead to further insight on
structure of baryons.
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