PHYSICAL REVIEW D VOLUME 57, NUMBER 8 15 APRIL 1998

Two massive and one massless 8) monopole
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Starting from Nahm's equations, we explore Bogomol'nyi-Prasad-Somme(B&1§ magnetic monopoles
in the Yang-Mills-Higgs theory of the gauge group(&p which is broken to SU(2XU(1). There exists a
family of BPS field configurations with a purely Abelian magnetic charge that describes two identical massive
monopoles and one massless monopole. We construct the field configurations with axial symmetry by employ-
ing the Atiyah-Drinfeld-Hitchin-Mannin-Nahm construction and find the explicit expression of the metrics for
the 12-dimensional moduli space of Nahm data and its submanif@0556-282(98)01408-§

PACS numbe(s): 14.80.Hv, 11.27-d, 14.40—n

[. INTRODUCTION poles become massless, forming a non-Abelian cloud sur-
rounding remaining massive monopoles. The global part of
In this paper we consider the Yang-Mills-Higgs theory the unbroken gauge symmetry becomes the isometry of the
whose gauge symmetry 8p is broken to SU(2XU(1), moduli space. The meaning of the moduli space coordinates
where the Higgs field expectation value lies along one of thef massless monopoles changes from their positions and
short roots. We investigate a family of purely Abelian con-phases to the gauge-invariant cloud structure parameters and
figurations that describes two identical massive monopolethe gauge orbit parameters. With an inequivalent symmetry
and one massless monopole. We approach the problem Hyeaking Sp(4)>SU(2)XxU(1) with the Higgs expectation
solving Nahm'’s equations under proper boundary and comalong a long root, an Abelian combination is made of one
patibility conditions. By using the Atiyah-Drinfeld-Hitchin- massive monopole and one massless monopole. This simple
Mannin-Nahm(ADHMN) construction[1,2], we construct case, where the field configuration and the moduli space met-
the field configurations in spherically and axially symmetricric are completely known, was studied in detail to learn
cases. We then calculate the metrics of the 12-dimensionalbout the non-Abelian cloul,8].
moduli spaceM'? of Nahm data and its submanifolds. Gen-  The next nontrivial purely Abelian configurations beyond
erally, it is expected that the moduli space of Nahm data ighis simple model are made of two massive monopoles and
isometric to the moduli space of the corresponding monopol@ne massless monopole. Two massive monopoles can be dis-
configurations. We examine the metric of the moduli spacdinguished as in the example where SU{4)J(1)x SU(2)
in detail and show that it behaves consistently with what isxU(1). Inthat case, the so-called Taubian-Calabi metric for
expected from the dynamics of monopoles. the moduli spac§7,9,1Q is obtained from the massless limit
Recently, magnetic monopoles have again become a focud that of the maximally broken caddl1]. Two massive
of attention as they play a crucial role in the study of elec-monopoles are identical in the cases where(HUSp(4),
tromagnetic duality in the supersymmetric Yang-Mills theo-and G,— SU(2)X U(1). (See Tables | and Il of Ref7].)
ries. The relevant magnetic monopole solutions are of th&ome time ago the moduli space of three monopoles in the
Bogomol'nyi-Prasad-SommerfieldBPS type [3]. The theory where SU(3)SU(2)xU(1) has been found by
gauge inequivalent field configurations of the BPS monopol®ancer by exploring the moduli space of Nahm's data
solutions are characterized by the moduli parameters assogit2,13.
ated with the zero modes of the solutions. The metric of the Our approach is similar to Dancer’'s. We use the embed-
moduli space determines the low-energy dynamics of monoding procedure to construct 8p configurations from S(4)
poles[4]. The electromagnetic duality has been explored byconfigurations. Some of the field configurations are simpler
studying quantum mechanics on the moduli space of the BPfhan Dancer’'s. Our spherical symmetric solution is just an
monopoles. embedding of the S(2) solution. A class of our axially sym-
When the gauge group is not maximally broken so thaimetric solutions can be obtained from a linear superposition
there is an unbroken non-Abelian gauge symmetry, thef configurations for two noninteracting monopoles. Our
moduli space dynamics becomes more subtle because of timork provides a further illustration of the role of massless
global color problem5]. Nevertheless, it has been known monopoles.
that the moduli space is well defined when the total magnetic Another motivation for studying the moduli space of con-
charge is purely Abeliaf6]. Recently, some such moduli figurations involving massless monopoles is that it may lead
spaces have been studied by starting from the maximals to some further insight about mesons and baryons in
symmetry-breaking case and restoring the broken symmetrguenched QCD. Even in quenched QCD, nondynamical ex-
partially [7]. From this point of view some magnetic mono- ternal quarks are expected to be confined and form mesons
and baryons. Suppose that quenched QCD were supersym-
metrized toN=4 so that there is no confinemefitiere we
*Electronic address: klee@phys.columbia.edu imagine that all supersymmetric partners are very massive
TElectronic address: chlu@cuphy3.phys.columbia.edu initially and then become lightlf the coupling constant is
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57 TWO MASSIVE AND ONE MASSLESS S@) MONOPOLE 5261

still strong, the resulting configurations of mesons and baryd- and (4—d)-dimensional self-dual theorig¢47]. It is also
ons cannot be described by Coulomb potentials as the notelieved in general that the moduli spaces of Nahm data and
linear gauge interaction is not negligible. The non-AbelianBPS monopoles are isometric to each other, which has been
gauge field should somehow form a cloud around externgbroved in the S(R) cas€g[18]. The idea is that Nahm’s equa-
guarks, making the whole configuration to be a gauge singleions are regarded as an infinite-dimensional moment map
because of the continuity of the configuration with respect taand that the hyperkder quotient [19] of the infinite-
coupling parameters. The shape of this cloud, which can bdimensional flat space will lead to the natural hypéatka
regarded as a tensionless cloud, is reminiscent of confinametric for the moduli space of Nahm d4dtE8,20.
ment strings that connected the quarks. This can be regarded The original Nahm method of S@) monopoles has been
as the limit where confining string becomes tensionless. generalized into all types of classical groU@s21]. Let us

If the electromagnetic duality holds even when the unbrostart with the SUN) case since all other groups can be
ken gauge symmetry is partially non-Abeli§i¥], mesons treated by embedding them into SW). Assuming that the

and baryons can have their magnetic dual, which are made alsymptotic Higgs field isp.,=diag(uy, . . . ,uy), With uq
massive and massless monopoles. Indeed massive mona- - - <y, along a given direction, then the Nahm data for
poles play the role of external quarks and massless monenulti-monopoles carrying chargemg, ... ,my_;) are de-

poles play that of non-Abelian cloud. Thus Abelian configu-fined asN—1 triples (T;,'T,,'T3) (I=1,... N—1) satis-
rations made of two massive monopoles and one masslesging the following.

monopole can be regarded as dual mesons. More interest- (i) For eachl, 'T; (i=1,2,3) are analytiai(m,)-valued
ingly, the moduli space of three massive and three masslesgnctions  satisfying Nahm’s equations in interval
monopoles in the theory of SU(4)SU(3)XU(1) can be  (u;,u4+4), 1=1,... N—1.

regarded as a magnetic dual of baryphs]. The structure of (i) The boundary conditions relating the Nahm data in
dual baryons may be similar to a shape of confinementwo adjoint intervals are the following.
strings connecting three external quarks. (@ If m>m,_4, then there exists a nonsingular limit

The plan of this work is as follows. In Sec. Il we review |imHMJ—1Ti:'—13 and the structure ofT; neart= p, is
the method to find Nahm data for the classical group. In Sec. !
Il we study the symmetry-breaking pattern Sp{43U(2)

I-lq  *
X U(1) and solve Nahm’s equations with relevant boundary o S |
conditions. In Sec. IV we use the ADHMN method to con- lim Ti={ , Ri |, ()]
struct the Higgs field configurations in spherically and axi- top” t—

ally symmetric cases. This leads to a general understanding

of the parameter space in terms of the size of non-Abelianvhere'R; form an (m,—m,_;)-dimensional irreducible rep-

cloud and the distance between massive monopoles. In Se@sentation of S(2) [unlessm;—m,_;=1, in which case

V we find the explicit metrics of the moduli space and its 'R, /(t— ) has to be replaced by a nonsingular expregsion

submanifolds. In Sec. VI we conclude with some remarks. and the asterisks refer to the elements that are not interesting
in this paper.

Il. NAHM DATA (b) If m<m;_,, the roles of fu;_1,) and (uy,p+1)
are reversed.
The Bogomol'nyi equations satisfied by BPS monopoles  (¢) |f m;=m,_,, the condition is more complicated, but

can be written as self-dual Yang-Mills equations fortunately we are not going to confront this situation in this
paper.
= :EE = 1) The way to embed the cases of $0Q(and Sp{) into the
pyo 2 mrPoT PO SU(N) group is described in Table[21]. These embedding

procedures are obtained by constraining the I$Ugenera-
in R* with coordinatesx;,x,,X3,X4. All the fields of BPS  tors further. The generatofisof Sp(N) satisfy the condition

monopoles here depend only &p,x,,xs. Instead, if every- TTJ+JT=0 such thatJJ*=—1. The generatorsT of
thing depends only on the complementary variable=t, ~ SO(N) satisfy the conditionT'"K+KT=0 such thatK K*
then Eq.(1) leads to the so-called Nahm equations =1. The explicit forms of],K can be deduced from Table |I.

These embedding procedures enable us to get th&lFO(
' 1 and Sp() Nahm data from the SUN) data with asymptotic
EJF[A“’A‘]_ 2 ik Aj Al 2 Higgs field ¢.,=diag(uy, ....,uy) and the charggm}.
What is different is that we now have one more set of con-
wherei,j,k=1,2,3. The solutions of Nahm’s equations sat-ditions connecting the Nahm data between different inter-
isfying certain boundary conditions are called Nahm datavals.

We can always perform a gauge transformation to eliminate (iii) There exist matriceC (1=1,... N—1) satisfying
A4, SO sometime®\, is not included in Nahm’s equations. N N -
Nahm'’s equations are much easier to solve than the original TTi(=t) ' =(C)Ty(tH(C) (4)

self-dual Yang-Mills equations since they are ordinary dif-

ferential equations. The relationship between Bogomol'nyiand compatibility conditionga) N~'C='CT for Sp(N) and
equationgdepend on three variableand Nahm'’s equations (b) N=Ic=—ICT for SO(N). These compatibility conditions
has been thoroughly investigated especially in the(23U reflect the fact that we are identifying certain $SJ(mono-
gauge group casge,16]. There is a kind of duality between poles to get SO{) and Sp{) monopoles.
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TABLE |. Embedding of Spil), SON), and SUQ).

G G charge ¢.. in SU(N) SU(N) charge
Sp(N) P1s -+ Pn M=~ Mont1-| M =My, = p|
N=2n I=1,...n I=1,...n
SO() Py Pn-2 M=~ Mont1-1| M =My, = p|
N=2n PP I=1,...n I=1,...n—-2
My_1=Mp1=p+p-
m,=2p,
SON) P1s -+« P M=~ Hont2-| M=Mzn1-1= P
N=2n+1 I=1,...n+1 |=1,...n—1

My =My, 1= 2py

In the above discussion we have assumed that - - - symmetric monopole configuration for any raetsuch that
<un, Which physically means that the gauge symmetry isa-h+#0 [22]. Since 3-h>0, the monopole with magnetic
maximally broken. We can also consider the cases with noreharge3* is massive (Here we are dropping the coupling
Abelian unbroken symmetry so that someg’s are equal; constant 4r/e.) On the other handy* -h=0 and so there is
geometrically this is the case when some of the intervalg,g monopole solution corresponding to the rao®As argued
shrink to zero length. The monopole mass is proportional tqn the Introduction, the zero mode counting can be done
the size of the corresponding interval and so the shrunkeggnsistently only for purely Abelian configurations. In our

intervals correspond to massless monopoles. All the procgs;qe the simplest case has the magnetic charge
dures described above remain unchanged even in this case.

Ill. NAHM DATA IN THE Sp (4) CASE V¥ =2p* + a*, (6)

The model we consider is the &p Yang-Mills theory
with a single Higgs field in the adjoint representation and no
potential. The vacuum expectation value of the Higgs field iS50 thaty* - @=0. The moduli space of this configuration is
nonzero and the gauge symmetry is spontaneously broken &2 dimensional and denoted By*2 As discussed in Ref.

SU(2)XU(1). Theroots and coroots of the $9)=SQ(5)
group are shown in Fig. 1. Note that in our conventigh
=dl|af*=a.

[7], we imagine theh as a limit whereh- « is positive but
becomes infinitesimal. We can regard® monopoles as
massless and so thg® monopole can be thought of as a

In this paper we consider the symmetry breaking withcomposite of two identical massiy&* monopoles and one
(®)=h-H along a short rooy. The simple roots we choose masslessa* monopole. Here we can see that the internal

for convenience ar@, « rather thansd, — «. For any roote,
there is a corresponding $2) subalgebra

tl(a)IL(E +tE_4),

J2a?

J2a?

t3(a)=a* -H. (5)

t3(a)=

(Ea_Efa)y

Using this SW2) algebra, we can embed the QY single

unbroken gauge group should be SQ(8ather than S(2)
because all the generators of Sp(4) transforms as vector or
singlet representations under the unbroken genergais

If we have chosen the Higgs expectation value tthbén
Fig. 1, the unbroken S(2) would be associated witB. The
Abelian configuration could have the magnetic cha#je
=a* + B* so thats* - 8=0. This configuration can be in-
terpreted as a composite of one massife monopole and
one masslesg* monopole. The BPS field configuration and
eight-dimensional moduli space of this magnetic charge are
known explicitly to be flaiR*. This is the model that has led
to many insights into non-Abelian cloyd].

monopole solution along any root. Thus there is a spherically As discussed in Sec. Il, Nahm data for(8pcan be stud-

h n

FIG. 1. Root diagram of Spg).

ied by embedding Sg) in SU(4). Thus the Higgs field can
be written as a X 4 traceless Hermitian matrix. As shown in
Table I, the Higgs expectation value can be chosen to be
(P)=diag(— p1,— p2,p2,11) With u1=pu,=0. Any gen-
erator T of the Sg4) subgroup should be traceless anti-
Hermitian and satisfy

TI+IT =0, (7

where the S@) invariant tensod is chosen to be
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0 0 1 T4—Ty,
c 0 10 T TNl (13
J= 0 -1 0 0 ®)
1. 0 0 0 and(iii) the spatial rotation group Sp()a;; € SO(3)},

. , o . . T—> aT;. (14
This defines the Sg) embedding in S#) uniquely, which i

is also consistent with Table I. A consistent choice of the
Cartan subgroup of $f) is H,;=diag(—1,1-1,1)/2 and
H,=diag(—1,—1,1,1)/2. The two inequivalent symmetry-
breaking patterns for Sp(4)SU(2)xU(1) in Fig. 1 corre-
spond toh-H=diag(—1,—1,1,1) andh’-H=(-1,0,0,1)
=H;+H,. Thus our case withu;=u,=0 corresponds to

the case where SU(4)SU(2)XU(1)XSU(2). _ , : .
From Table I in Sec. Il, we read that our configuratiéh scribe monopole configurations in the center-of-mass frame.

in Sp4) has the SI4) magnetic charge (1,2,1), that is, two We can alsc_) choose the _gau'gg=0. Furthermore, we use a
identical massive monopoles and two distinct masslesSPatial rotation to set thieindependent tr [, T,), tr (T1Ts),

monopoles. This is exactly the configuration considered bypd I (T2Ts) to be zero. After a gauge rotation, we get that,

Notice that Eq(14) is a pure rotation as there is no residue to
be fixed at= = 1.[This indicates that the rotational group is
SQ(3) rather than S(R).]

To solve Nahm’s equations together with the compatibil-
ity condition, we use the spatial translation to maketrace-

less. These traceless Nahm data are called centered and de-

Houghton[23], whose focus was on its hypelkar quotient
spaces. If we have chosen the expectation vhlyehe sim-

plest Abelian configurations have the magnetic charge
(1,1,1) in SU4), that is, two distinct massive monopoles and
one massless monopole, whose moduli space metric has b

found to be the Taubian-Calabi metfi¢,9,10.

According to Sec. Il, Nahm data ,(t) defined on the
interval[ —1,1] are anti-Hermitian X 2 matrices and satisfy
Nahm’s equations

dT, 1
E"_[TA,Ti]:EEijk[Tj Tl 9

and the compatibility condition
T, (-tHT=CT,(t)C! (10)

with a symmetric matrixC. The Nahm data should be ana-

lytic at the end point$=*1. The boundary and compatibil-

for eachj=1,2,3,

1
Cihere quaternions; are chosen so that
el:iTl, 82:i7'3, e3:i7'2, (16)

with Pauli matricesr; . Then Nahm'’s equations become the
well-known Euler top equations

f1:f2f3,
ic2:f3f1'
fa="faf,. (17

We note thatf2— 3 andf3— f2 are independent df Hence
let us consider the cagé=<f3<f2. Then the solution to this

ity conditions(3) and (4) satisfied by the above Nahm data set of equations is known in terms of Jacobi elliptic functions

become

[Tu(=D122=[Tu(1)]2- 13

This boundary value of Nahm data can be identified with the
position of the massless monopole in the center-of-mass —
frame. A detailed understanding of this boundary condition

will be needed in the case wheeg® monopoles become
massive.

The space of Nahm data has the following symmet(igs:
local gauge transformatior={g(t) € U(2)}, whose trans-
formations are

_, dg _
T,—0Tag 1‘& L
T—gTig (12

which should be consistent with the conditidi®) and(11),
and whose subgroup §,={ge G:g(—1)=9(1)=1}; (ii)
the spatial translation groug® with three parameters; ,

as

__DeoenD(t-ty)]
! sn{D(t—tg)] °

_ D dnD(t-to)]
2 sn{D(t—tg)] ’

D
= b1 (19

wherek e[ 0,1] is the elliptic modulus an®,t, are arbitrary.
We can change the sign of any twofaf, f,, andf; by 180°
spatial rotations.
On the other hand, the compatibility conditighO) be-
comes, for every,
fi(—t)7=f;(HCrC 1, (19
with a symmetric matrixC. The boundary conditiori11)

becomed,(—1)=f,(1). Among linear combinations of;
and 73, the right choice foIC with Nahm data(15) is
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C=s. 20 (T,T)=— Jl dttr (TT). (24)
-1

This implies thatf, is an odd function and,,f; are even
functions! This fixes the parametet, to satisfy cp(Dto) They form a real traceless>33 matrix and realize a five-

=0. Then our solution for Nahm’s equation is dimensional representation of &). The data(21) lead to
sn(D1) the coordinates
_ W,
[1=DVI-K 5 Nim (1 K2)D?,
1 )\2: - D21 (25)
f,=—DyJ1—k? ,
cn(DY) and\3=X\,=\5=0, which is invariant under the 180° rota-
tions around three Cartesian axes. Thus these data have a
¢ :_ank(Dt) (01  Z2XZ isotropy group.N® is a five-dimensional manifold
8 cn(Dt) homeomorphic tR® and admits a nonfree rotational &D

action. A further quotient of this manifold by the spatial
These Nahm data are regular toz [ —1,1]. The analyticity  rotation group S@B) leads to a two-dimensional surface
of the data requires that<ok<1 and O<D<K(k) with  N%SO(3),whose eight copies, as we will argue in Sec. V,
4K (k) being the period of sn K(K) is also the first com- make a geodesic complete manifgid. There are also two-
plete elliptic integralK = [ 7?d6(1—k?sir?d)"*2. Equations  dimensional surfaces of revolution, which describe axially
(15) and(21) are the Nahm data we are looking fpActu-  symmetric configurations.
ally they are the Nahm data on a representative point of the Since the gauge group $2) is triholomorphic, there is
SO(3)xX SO(3) orbit] Sometimes we will simply call Eq. another hyperkaer quotient ofM8. When the gauge sym-
(21) the Nahm data. There are eight equivalent copies of thenetry is maximally broken, there is still an unbrokefillin
above Nahm data: We can excharfgeandf; or change the the center-of-mass frame. We can use th{$)Wo construct
signs of any two off;, f,, andf;. The allowed local gauge the hyperkaler quotient. With our choice of the boundary

transformations of Eq(12) are made ofy(t) such that condition (11) and quaternion$16), a convenient choice of
this U(1) subgroup is one generated by (Other choices are
g(t)=eiVe2 (22 gauge equivalent to this choi¢d his U(1) group acts freely

as the corresponding gauge parametgin Eq. (22) is an
with evene; and odde,, €5 functions. This will be crucial in  odd function. The corresponding moment map is
showing that the spherically symmetric Nahm data are not
invariant under global gauge transformations duetges. p=iftr Ty(L) 7],tr [To(1) 73], tr [Ta(1) 73], (26)

The moduli spacéM'? of uncentered three monopoles is . .

the space of gauge inequivalent Nahm data with the gaugkn® valueZ; of this moment map is then
action G,. Since the center (1) of U(2) is triholomorphic, fi=—i[T(1)] 27)
we can perform a hyperkéer quotient with the momentum J R/ 22
map pu=—i(tr Ty,tr To,tr T3). This gives the eight- and can be interpreted as the position of the massless mono-
dimensional relative modulus spadd® of the centered pole. The hyperKaler quotient spacé(&) = u~1()/U(1)
Nahm data. A further quotient of this manifold by the inter-js a four-dimensional hyperkéer space. The rotational
nal gauge symmetry S@) leads to the five-dimensional transformation SO(3¥{a;} generates a homeomorphic
manifold N°=M®SU(2). The homeomorphic coordinates mapping fromM*(¢,) to M?(a;; ;). (Under a gauge trans-
for N° are given in terms of gauge-invariahindependent  formation of Nahm data, the moment map transforms non-

quantities[12] trivially. The gauge orbit of the positiof of the massless
monopole will be shown to be an ellipsoid:his family will
N=(T1,T) (T2, o), be shown to interpolate the flat spadé(0)=R*x S' to the
Atiyah-Hitchin spaceM?*(=). Since any hyperkder space
No=(T1,T1)—(T3,T3), in four dimensions is self-dual and so Ricci flM*({) can
be regarded as a one-parameter family of gravitational in-
Ng=(T1,Ty), stantons.
Na=(T1,T3), IV. ADHMN CONSTRUCTION
Ns=(T,,T3), (23 torFor given Nahm data, we can define a differential opera-
where 3
_d .
AT =i——=2 (iT;+x)®e, (28)
dt =1

Thus the generic form of the Nahm data would be givenrhy
=7,.e, with e,=1. 7, are independent df, 7,; are odd func- ~wheree; (j=1,2,3) are quaternion units. The dimension of
tions oft, and7,,, and7,; are even functions. the kernel of AT depends on the boundary conditions in-
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volved in defining Nahm dat®&; . For our case it turns out to
be four. The basis of KeA ' consists of four orthonormal
four-component vectorg, ,u=1,- - - ,4 with the inner prod-
ucts(v,, v,y =1 dt vL~vV= 8, Interms of the 44 ma-
trix V=(v{,v,,V3,V,), the ADHMN construction of mono-
pole solutions inR® goes as follows: The ¥4 Hermitian
matrix-valued fields

1
b= f dt tV'v, (29
-1
A—'fld VT(N 30
j=1 71t &—)(J (30)
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is not invariant for all three generators of the @WJgauge
rotation and so the gauge orbit $5.]

The kernel equation$31) can be easily solved for the
spherically symmetric solution and give rise to the Higgs
field

DO=2H(2r) r-t(y), (33
wherer=\x;x;, rj=x;/r, and H(r)=coth¢)—1/r. This is
the well-known single-monopole solution witkd,«<H,
along thex; direction. This configuration is the $2) em-
bedded solution along the composite rgofThe energy den-

sity is maximized at the center. We just argued that the cor-
responding Nahm data are not invariant under some of the

form a BPS monopole field configuration. It is really a con-9lobal gauge transformations. To understand this in terms of
figuration in SUW4) gauge theory and may need a further the field configuration, we deduce from the root diagram in

gauge transformation in S¥) to be expressed as a proper

Sp(4) configuration.
We express a single four vector as: (W, ,w,,W3,W,) .

Fig. 1 that the generatoty y) commute witht3(«), but not
with t* a). Thus the spherically symmetric field configura-
tion is not invariant under two dof («), consistent with the

Since the ADHMN construction is invariant under constantPrevious argument.

gauge transformations of Nahm data, we can ragate,,e;
to bee,,e;,e,, respectively. Then the equatign'v=0 can
be written in the same form as those in Ref3]:

. 1 1
W1 —XqWq— (X3~ iX)W3+ §f1W1+ E(fs_fz)W4=0,

. _ 1 1
Wy —XqWo — (X3 —iX2) Wy — §f1W2Jr E(f2+f3)W3:0,

. 1 1
W3+X1W3_(X3+iX2)W1_ Ele3+ E(f2+f3)W2:O,

. 1 1
W4+X1W4_(X3+iX2)W2+ §f1W4+ E(f3—f2)Wl=O
(31

We now turn to the axially symmetric cases. Similar to
Dancer’s case, we have two axially symmetric cases. The
hyperbolic case appears whkr1 and 0<D <, so that

f1=f2=O, f3:D (34)
These Nahm data are invariant under rotation aroundihe
axis. Although no hyperbolic function is involved here, we
have used the same terminology as used as in[R&f.be-
cause of a similarity in their qualitative behavior. The trigo-
nometric case appears whkr0, so that
with 0<D</x/2. These data are invariant under the rota-
tion around thex; axis.

Our hyperbolic case is much simpler than the correspond-
ing case considered by Dancer. After solving E8{l), we

It is hard to obtain general solutions of the above equations!S€ Eq.(29) and a gauge transformation to obtain the Higgs
In this section we would like to work out several special configuration
cases in order to check whether the ADHMN construction

leads to the sensible result. This exercise also yields a gen-
eral understanding of the physical meaning of paraméters

andD appearing in Nahm data.

Dd=2H(2r  )r -t(B)+2H(2r_)r_-t(8), (36

wherer.=(Xq,X,,X3*=D/2). We recognize that this con-

The first case we consider is the spherically symmetridiguration describeg* and 6* monopoles located at;=

solution withD=0 and so

f1:f2:f3:0. (32)

—D/2 and x3=D/2, respectively. Sincgt'(B),t/(8)]=0,
there is no direct interaction between these two monopoles
and the field configuratio(B86) is just a superposition of two
corresponding configurations. In Dancer's hyperbolic case,

Clearly these Nahm data are invariant under the spatidwo massive monopoles are interacting.
SQO(3) rotation (14). One may wonder whether these Nahm  The above hyperbolic configuration is not invariant under

data are invariant under global gauge transformatids.
The above datd;=0, are invariant under the global £%)
gauge rotatior{12). However, the initialT ,=0 is not neces-

global gauge rotations df «) as it does not commute with
t(B) and t(4). Among the dyonic excitations, there is a
simple one that is just a superposition®f and 5* dyons.

sarily invariant. The reason is that the gauge parameter®nce the magnitudes of their electric charges are not identi-
€,,€, of EQ. (22) are odd functions and so their time deriva- cal, their relative charge is nonzero. This corresponds to the

tive does not vanish. Howeveg; is even and so can be
constant, leavind, invariant. Thus one expects3 gauge

excitation due to thé3(«) rotation. Clearly, this configura-
tion would preserve the axial symmetry. In Sec. V the mo-

orbit space for the spherically symmetric solution. This two-tion that changeB and this relative charge will be described
sphere will also appear in the metric of the modulus space iby a flat two-dimensional surface of revolution. Especially
Sec. V.[In Dancer’s case, the spherically symmetric solutionthe configuration with relative electric charge is spherically
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symmetric wherD =0, which is consistent with the fact that which is exactly the result of two S8 monopoles[24].
the spherically symmetric solution is not invariant under theMeanwhile Eqs(38) and(39) lead to® ;= —®,4,=—1 and

global gauge rotations. ®,,=d,,=0 atD=7/2. Thus the Higgs field41) along the
On the other hand, our trigonometric ca@b) is more  symmetric axis becomes the Higgs field for charge two-
complicated. Equatio31) at (z,0,0) becomes SU(2)-monopole configuration.
L As a general verification of the suggestion made above,
< < _ let us check whether the three-monopole case degenerates
wy—zwy + 5 DtanDhw, =0, @D into the SU2) result wherk=0, D= x/2, or more generally

D—K(k). In this limit, Nahm data21) approach
) 1
Wo—ZWy— ED tan(Dt)w,—D se¢Dt)w;=0, (38

fl,fz,fgm—% (46)
\}v3+zw3—%Dtar{Dt)wg—Dsec(Dt)wzzo, (39
neart=—1 and
W+ zw, + 1Dtan(Dt)w4=o. (40) 1
2 —fl,fz,f3~—l—_t (47)

Notice that Eqs(37) and(40) are not coupled with anything

else, while Eqs(38) and(39) are only coupled among them- neart=1. These are exactly the boundary conditions satis-

selves. Thus, after an $4) gauge transformation the Higgs fied by Nahm data for two identical monopoles in the(3U
field has the form case[2,16].

This is a good place to introduce a geometric picture of

* 0 0~ the non-Abelian cloud. The boundary val(id) is identified
0O * 0O with the position (27) of the massless monopole in the
*=1, x ol (41)  center-of-mass frame. The positigrof the massless mono-

0 pole changes under the gauge transformatii®). For an
* * . —

0 0 SU(2) transformationg(t) such thatg™*(1)eig(1)="R; e,
i=fiRi,. Thus the S(R) orbit of the position(27) would

where an asterisk indicates a nonvanishing entry. Sincée an ellipsoid defined by

®TJ+JP=0 with J in Eq. (8), we getd3=—d,, and
O 4= —D,,. From Eq.(37) we can easily obtain ) ) )
{1 N e N {3

f(z)—f(—2) > > >=1 (48
TErTTEL (42) f(1)? (1) f3(1)
where The size of this ellipsoid would indicate the size of the non-
Abelian cloud[7]. [The ellipsoid for Dancer’s case is simi-
f(z)=e22{[(22+ 1)D?+47%(2z—1)]cosD larly given with f;(3) replacingf;(1). This ellipsoid for the
5 ] spherically symmetric solution has nonzero dize.
+D[D*+4z(z—1)]sin D}, (43 For the spherically symmetric solution with=0, this

ellipsoid collapses to a point at origin, indicating that the
massless monopole is at the origin. Indeed, it is consistent
with the picture that all magnetic charges lie at the origin for
this solution. For the hyperbolic solution with=1, this el-
lipsoid collapses into a line connecting tyg¥ monopoles.

g(z)=e?)(D?+4z%)(2z cosD+D sinD). (44

We are not going to pursue the details for the corngr22
matrix part of®, which describes the non-Abelian part. Like

in the case of Ref[12], we believe that the trigonometric Especially when thex* monopole lies at the end, it is a

data correspond to the situation when the energy density '§uperposition of3* and &* monopoles. For the trigonomet-

maximized on a ring around the axis .Of symmetry, EVeMic case withk=0, the ellipsoid becomes axially symmetric
though we have not done the numerical computation tq

. B : oo . around thex; direction. In the Atiyah-Hitchin limitD
chec.k this. Whe =0, the conflgura'Flon is spherically sym- —K(k), the size of this ellipsoid becomes infinite, implying
metric. WhenD — 7/2, we will see in a moment that our

; e that the massless monopole has been sent to spatial infinity.
result approaches the Atiyah-Hitchin case. That case, when From this analysis of various limits, a fairly consistent

et e e I s me v o TEANNG of Wo parametekeandD emerges. When e ex

ti)c/)n for t%/e trigonometriz/: cagg 9 9y amine the moduli space metr_ic in the next sec.tion, we will
At the limit D— /2, Eq (42)' becomes see that a somewhat richer picture emerges. Figure 2 shows

e the k-D space. The spherically symmetric case corresponds
. to the lineD=0. The trigonometric case lies on the like

— ], (45 =0 and 0<D<=/2 and the hyperbolic case lies on the line

k=1. The Atiyah-Hitchin case corresponds to the cubve

=K(k).

(1)22: - tanh(ZZ) -
2+

N
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D tions, whose nonsingular solutions for Nahm dagd),
parametrized by eight real parameterg,n,, are
1. . m; : N3
Y]_:— f1|181+ f2|2+_ e2+ f3|3+_ 63 y
D=K(® 2 fy fa
b1
2
1 . . my . Ny
Y2:_ _fllzel+ f2|l+_ ez_ f3|4+_ e3 y
2 fy fa
k
0 1 1 . . m4 . nl
YSZ_ _fl|3e1+ f2|4+_ ez+ f3|l+_ 83 ’
FIG. 2. k-D space. 2 fa fs
V. MODULI SPACE METRIC 1. . ms .
Y4:§ f1|4el+ f2|3+f_ 62 f3|2+f_ 63 y (54)
Now let us turn our attention to the metric of the moduli 2
space. By using centered Nahm data, we work in the center-
of-mass frame of monopoles. The relative moduli spsiée ~ Where
of Nahm data should isometrically correspond to the relative
moduli space of the monopole dynamics. The metric for the v, m, n,
e e l,(t)=| dt + : (55
center-of-mass motion is flat and we expect that n 0 f(t)2  fa(t')2

Stx m8

M12=R3x , (49 The lower bound ofl ,(t) is chosen so that they are odd
A functions. This makey¥, satisfy the compatibility condition
L(—1)T=CY,(t)C™*, which is implied from Eq(10).

The metric on the moduli spadd? is induced from the

t metric (52) on the infinite-dimensional affine algebra.

With our solutions(54), the general result is

where A is a discrete subgroup, about which we are notY
concerned here. Our work of finding the moduli space metrit];Ia
is greatly facilitated by the works done by Dan¢&g] and
Irwin [25]. Their general derivation works equally well with
our problem. However, our detailed results are different from 4

theirs. For the sake of completeness, we present their deriva- " 2 / 2 ,
tion more explicitly as the vl?/ay applied topour case. dsi(Y.Y") ,;1 (@1 grX)m,m,, + (g2 g2X)n,.n,

To calculate the metric of the relative moduli spadé,

let us define tangent vectors ®8. A tangent vectorY +019oX(m,n; +n,m,) ], (56)
=(Y1,Y5,Y3,Y,) must satisfy the linearized Nahm’s equa-
tions where
Yi+[Y41Ti]+[T4in]=Eijk[Tj Y. (50 X(k,D)=f1(1)f2(1)f5(1),
Since the moduli spacki® is defined by gauge-equivalent 1 dt
Nahm data, the tangent vector should be orthogonal to infini- 01(k,D)= J 5
tesimal gauge transformatiodd ,, in G, that is, 0 f5(t)
4
1 dt
> (y,,sT,)=0, (51) KDy=J . (57)
et} < " M> 92( 0 f3(t)2
where the orthogonality is defined with the flat metric on the  \ye can calculate the metric by finding the tangent vector
infinite-dimensional affine spadé8,2q at a generic point oM2, which can be obtained by the
SO(3)XSO(3) spatial and gauge rotations of Nahm data
dsi(Y,Y')=2, (Y, Y0). (52)  (21). Due to the SO(3X SO(3) symmetry of the metric, the
n . general metric can be found if it is known near the identity.
. We want to relate the coordinates, ,n, of the tangent
Thus Eq.(51) takes an explicit form space at the specific point to the infinitesimal changes of the
4 parametersk,D and the infinitesimal SO(3y SO(3) trans-
N _ formations[25]. This corresponds basically the rotation of a
+ =0. . e y S
Va Mzzl [Ty Yul=0 (53 rigid body around three principal axes. Similar to the rigid-

body case, we can find the metric once we know the moment
The procedure of solving Eq$50) and (53) for tangent  of inertia around each principal axis, which are the coordi-
vectors has been described in Ref2]. In general,Y, can  nate axes for our Nahm data5) and(21) [12]. The kinetic
be expressed a6,=y,;(€;/2). Substituting this expression part for the rigid-body case is expressed in terms of the left
into Egs.(50) and (53), we get four linear differential equa- invariant one-forms



5268 KIMYEONG LEE AND CHANGHAI LU
o,=—Sin dh+cosy sin 6 do, E
o,=C0S ¢ df+sin ¢ sin 6 do,

o3=dy+cos 6 de, (58)

which correspond to the infinitesimal spatial rotations around
three principal axes. The corresponding left-invariant one-

forms for the gauge rotations are denotedoas The rela-

tions we seek are

1
my=— Ed)‘l’ FIG. 3. Sketch of the geodesically complete spac® ik co-
ordinates. The shaded region corresponds ta\&O(3) space.
1
ny=—=d\,, _ 9:+0
2 ci=fL,(L\)fs(V)\/ 7,
1=f2(1)f3(1) \/1+(91+92)X
My=N\;03, o Vo1 +92X
2 f(g;
= o oyt by | {03 ) —
PTLX T gkl Y R ) 0y Y92+ 92X 61
¥ f(Do,
922 1 bogre fu( . Once we replaced the parametrizat{&) into the metric
ST14giX 72 gt 92X 2027 B2\ F ) 72 72 (56), we would have obtained the explicit form for the metric
of the moduli spacé/1®. Rather, let us study the metric step
by step. The two-dimensional spag? is the geodesically
N3=—Ny07, complete space made of eight copies of #h® space,
N®°/Sp(3), asdiscussed after Eq21). This space describes
ga(Ai—\y) 1 the motion of the monopoles with the vanishing(Snglec- _
= o1— tric charge and zero angular momentum. The metric of this
91192 V(91+092)(1+(91+92)X) space obtained from Eq&25), (56), and(59) is
Xibyoy—c LEC N 2 1
171 f2(1) IR N ds)e= Z{X(gldxl"'92d7\2)2+91d)\§+92d)\§}- (62)
g1(A1—\») 1 Figure 3 shows this space in terms of two coordinates, which
ny= n 01— in the shaded region a® and E=\1—k?D. The above
9:+02 V(911 92) (14 (911 92)X)

metric at origin is smooth witl,E playing Cartesian coor-

fa(1) . dinates. The origin corresponds to the spherically symmetric
Xibjo1— cl( o1 0'1) } , (59 configuration. Two coordinate axes correspond to two hyper-
2(2) bolic configurations, which are symmetric along real spatial
h ) , X5,X3 coordinate axes. The diagonal lines correspond to one
where, ), are given in Eq(29), trigonometric one, which is symmetric along the real spatial
5 X, axis. The boundary curves correspond to the Atiyah-
b —kZDZ\/ 91 Hitchin configurations, where the massless monopole has
i (91+9,)(A+(g,+92)X)’ been moved to spatial infinity. _ _ _
While we have not studied in detail the geodesic motion
D2 on this space, one can see from symmetry that the trigono-
bzzgz—, metric solutions with velocity pointing to the origin will re-
Vg1 + gix main trigonometric after the configuration passes through the
origin. With a similar velocity, the hyperbolic solutions will
g1(1—k2)D2 remain hyperbolic, which is consistent with the view that
b3=1— (60) two monopoles without gauge charge do not interact for this

VO2+ 95X

and

case. This is in contrast with Dancer’s case where the trigo-
nometric configuration changes to the hyperbolic one and
vice versa. When the cloud size becomes large, the configu-
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[o
| ds =E{X( d\ 1+ 00N )2+ g N2+ g,dN2} + a2
) M8~ 7 g10A ;1T 020A 010A1T020A; 101
f3(1) .k
+a20'§+a30'§+ bl(Tl_Cl(fz(_l)O'l_O'l
— o)C o () .2
D + bZUZ_CZ 1:3(_1)0'2_0'2
o " f,(1) .

2
+{b30’3_C3(f2(_1)0'3_0'3>] . (65)
This metric is hyperKaler. The isometric group is SO(3)
FIG. 4. Massive monopole with a finite-size cloud. The central X SO(3). The S@8B) global gauge transformations are triho-
doughnut indicates the symmetric axig lomorphic and the S@) spatial rotations rotate three com-
plex structures of the manifold. There are several interesting

ration would approach the Atiyah-Hitchin configuration andlimits Qf this metric. When the cloud s_ize is smallest with
the boundary curve shows the 90° scattering of these mond<=1, its Nahm data are the hyperbolic cad#) and the

poles. above metric becomes

The metric onN°=M?&/SU(2) with theZ,x Z, isotropic
group is

d§i5=ds§,2+ a,02+ay05+as03, (63

with

0192
a,;=k*D*——=,
! 9110,

95X
1+g:X

95X
1+9g,X

az=(1-k??D* g, + ) (64)

Here one uses the orthogonality condition for the tangenti
vectors ofN°® to that of gauge rotatiofi.2,25, which can be
found from Eq.(59) by dropping terms depending ¢m and

¢; . There is no cross term for the invariant one-forms, which.

is consistent withZ, X Z, isotropy group ofN®. This metric
describes the monopole dynamics with zero(3Ugauge
charge, perhaps with nonzero orbital angular momentu
Figure 4 shows two massive monopoléso half doughnuts

on thexs axig) with generic cloud size and three principal

axes. In zero cloud sizZe= 1, the metric is symmetric under
the rotation around the; axis so that;=a, andaz=0. In
the trigonometric cask=0, the metric is symmetric under
the rotation around thg; axis so thata;=0 anda,=as.

The distance between two massive monopoles is defined
up to the monopole core size. We guess this distance as

a

dspe=dD?+ D203+ D?05+D tanhD o+ D cothD o5

+o3. (66)
The moments of inertia for internal gauge transformations
are nonzero exactly as we argued in Sec. IV. Especially for

spherically symmetric case with=0, the coefficient ofr;
vanishes, but those af, and o3 are nonvanishing and be-
come identical, implying th&? gauge orbit space. In large
separatiorD>1, the inertia foro; ando, become identical.

The inertia forfrg is constant, which corresponds & «)
dyonic excitations discussed in the paragraph after(86).
We also see that/a,=a,=D is indeed the distance be-
tween two massive monopoles.

When the distance between ty8¥ monopoles is small-
est, its Nahm data are the trigonometric c438). In this
case the metri¢66) takes a rather complicated form. While
the explicit formula can be obtained easily, we will not
bother to write it down here. We simply note that the mo-
jnents of inertia along, andx; axes are identical because
the trigonometric configurations are symmetric under rota-
tion around thex; axis.

There are two types of surface of evolution, correspond-
ing to the hyperbolic and trigonometric cases. When we in-
clude internal global gauge rotations that preserve the axial
symmetry, we obtain two-dimensional surfaces of revolu-

Mion. The two-dimensional metric for the trigonometric case

with k=0 is

1+

sin ZD)

dsyg,=seéD (1+DtanD) 5

D?(oy—07)?

(1+DtanD)?

X | dD?+

, (67)

~ \Ja;~ \/a, because the moment of inertia for a point par- 5

ticle would be mass times the square of distance from th&vhereo; — o4 can be putinto a rotatioda. As D— /2, the

origin. We will see later that the above approximation is truemetric (67) becomes

when the non-Abelian cloud size is very small or very large.
From Egs.(56) and (59) we get the full metric orM?,

which is (68)

1
ds?=dp?+ szdaz,
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where p=2//(7—2D). In this limit the massless mono-
pole moves out from localized massive monopoles and so the
non-Abelian cloud is expected to become more spherical
with the flatR* moduli space as in Ref7]. The above met-

ric is then a section dR* with a radial variable as we will

see in a moment. In the physical space, the massless cloud
size is of ordep?. The non-Abelian component of the gauge
field will change its behavior from o 142 as one crosses
this radiusp?. Another axially symmetric case is hyperbolic
one withk=1,0<D <, whose metric is

FIG. 5. Parameters of the asymptotic metric. The center of mass
2 v2 is at the middle of the line connecting two massj#e monopoles.
dshyper7=0D?+ 05. (69)
In terms of the relative positions and the relative angles

Clearly this flat metric is a part of the metri66). ¥,,a=1,2, the asymptotic form of the metric for the relative
The limit of large cloud size can be found in the region moduli spacem?® is

whereK(k)—D<1. In Sec. IV, we argued that Nahm data

in this case approach those for the Atiyah-Hitchin case. In 2
this limit one can show easily that the met(@5) becomes dsZ:aZ:‘, [Gupdra - drp+ (G Y.DuDusl, (74
p? - v - where
d52=dp2+ Z{(Ul_01)2+(0'2+0'2)2+(0'3+0'3)2}
b2 1+2¢ 1 1 1 1
+—2dK2+a205+b203+c20§+0(p—1), (70) . 1+e rq r l1+e r 75
“ ab™ 1 1 142 1 1]’
wherep=2D/(K—D) and 1te 1+e 1, 1
Diy=dipytw(ry)-dry—w(r)-dr, (76)

_ K(K=E)[E—(1—Kk*)K]

2
a E ,

(71)  with the Dirac potentialv such thatvxXw(r)=V(1/r). Here,
for the sake of later use, we have introduced a parameter
that is propotional to the ratio of the* monopole mass and
, EK(K-E) B* monopole mass. The limit whewg* monopoles become
b :m’ (72) massless is thee—0+. If we have removed the direct in-
teraction between two identical massive monopoles, the
above metric is identical to the Taubian-Calabi metric of the
SU(4)—U(1)XSU(2)XU(1) case. Since the non-Abelian
cloud of a massless monopole is independent of the direct
interaction, the S(2) orbit on the non-Abelian cloud would
with the second complete elliptic integralE  again be the three-dimensional ellipsoid defined by
= [T"%d6\/1—KZsir?0. This shows that the asymptotic space1t2=const, as shown in Fig. 5. This ellipsoid would be
is a direct product oR* and the Atiyah-Hitchin space. As in the limit of the ellipsoid(48), where it becomes symmetric
Ref. [7], we expect that the metric of the massless cloudound thex; axis. This fact can be seen easily by adapting
space approaches that of fRf, which is exactly what the the argument for the SW) case in Ref[7]. In the large
above limit shows. A combination of orbital and gauge an-cloud size limit, one can compare the exact met68 and
gular variables needs to be introdud@s] to make thisR* ~ the above one. We sé¢/(K—D)~r;+r, andr~K(k)~
explicit. We note thatya;=a and Ja,=b. The distance —Iny1—Kk2. The conditiorr, +r,>r for the large cloud size

between two massive monopoles is given approximately a@écomesK(k)—-D<1.
r~a~b~—Iny1—KZ [20]. Now we are in position to learn more about the four-

The part of the modulus space metric we can calculatéimensional spac ‘() defined by the moment ma26)
independently from Nahm's formalism is the asymptotic9enerated from the; U(1). For Nahm dat15) and(21) we
metric, which is valid when the mutual distances betweerP€t = (0,£,0) with
monopoles are large. This can be done by studying the inter-
action between dyons in large separati@f,11] and taking 1
the massless limit. In the center-of-mass frame, the relative ¢=b Vl_kzcnK(D)- (77)
positions between the massi@ monopoles and the mass-
less a* monopole arer; andr, as shown in Fig. 5. The The general Nahm data are obtained from that in(Ed). by
relative position between two massive monopoles=#s;  spatial and gauge rotations. Thsvould be a function of
+r,. rotational and gauge parameters. With our choice @f)U

_EK[E—(1-k*)K]

2
¢ K—E ’

(73
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and the Nahm daté21), it is easy to find the quotient space and the middle of line connecting tw®* monopoles.When
M4 =un"1(9/U(1) at =0, which corresponds tk=1  ¢=0, the metric(80) becomes the flat metri¥8).

from Eq. (77). This corresponds to the hyperbolic d&8)
with the minimal size of non-Abelian cloud. The moduli
space metric is that66) for the hyperbolic data. Among

them, the gauge rotation by changeq away from zero and We have studied a purely Abelian BPS monopole con-
so the corresponding, part should be dropped. Dividing by figuration made of two identical massive monopoles and one
the U(1) group of 7 implies dropping ther, term from the ~ Massless monopole in the theory where the gauge group

metric. The resulting four-dimensional space is the Rat SP(4) is spontaneously broken to SU(2)J(1) along a short
% St with the metric root. We approached this problem by finding the solutions

for the corresponding Nahm equations under proper bound-
s o 2 2 w2 ary and compatibility conditions. We have used the ADHMN
ds’=dD?+D?*(01+03)+ 073, (78 construction to get the spherically and axially symmetric
. field configurations, which are consistent with the field
On the other hand, whefi=c, we haveD=K(k), which  theqry picture. From the analysis of the axially symmetric
means that the massless monopole has been remO\zed, reséiiutions, we have come to understand the role of the non-
ing in the Atlyah-Hitchin metric. Thus we see thel'({)  Apelian cloud and its size. Then the explicit form of the
interpolates - betweenM™(0)=R*xS" and the Atlyah-  metric on the eight-dimensional moduli space of relative mo-
Hitchin spaceM® (). tion is found. By studying the metric in various limits, we
We find another argument for the above resi) by  gee that this metric for the moduli space of the Nahm data is
considering the asymptotic form of the met(i). Among  shown to be consistent with what is expected from the mono-
two conserved () generated by),— 5+ 6,, the relative ol dgynamics.
electric charge of two massive monopoles, which generates \ye have also studied the metric of various submanifolds
ha— hat 6, is not conserved when the short-distance correcyf this space. Our work provides further support to the idea
tion is included. However, the difference between totalihat Nahm's approach for the BPS monopole configurations
charge of twog* monopoles and that of am* monopole,  and their modulus spaces is valid in general. Our work leads
which generates the transformatiopy—¢1+6 and ¢,  also to some insight into the characteristics of the non-
—tpp— 6, will remain exact even when a short distance cor-apelian cloud and the gauge orbit. It is interesting to note
rection is included. The moment map of thislysymmetry,  that the spherically symmetric solution has nonzero inertia
which can be obtained easily from the hypérea one-  for some unbroken gauge transformations.
forms[26,9], is From the previous experiences we now see how in prin-
ciple one may find the moduli space metric of two identical
ri—r, massive and one massless monopoles in the theory®yth
=— (79  —-SU(2)xU(1). To getthis one may start from the theory
with SO(8)— SU(2)3x U(1) with two identical massive and
This is the position of the massless monopole as shown ifrée distinct massless monopoles. If one identifies two
Fig. 5. (Even in the maximally broken case, the above mo-massless monopoles, then the configuration would be that of
ment map is corredtAs ¢ increases from zero to infinity, the W0 massive and two distinct massless monopoles in the
size of the non-Abelian cloud increases from zero to infinity,theory with SO(7)>SU(2)?x U(1). After further identifi-
consistent with the picture discussed in the preceding para@tion of all massless monopoles, one would get the desired

graph. Also, we can trivially obtain the asymptotic form of configuration in the theory witis,. - _ _ _
the metric forM*(¢), The hyperkaler quotient of the eight-dimensional relative

moduli spaces of these configurations is a four-dimensional
hyperKaler space. To find th14(£=0) one can consider
the asymptotic form of the metric for two massive mono-
poles with a minimum size clougWe overlap the massless
monopole on one of the massive monopgl@hey areR®
X S, Taub—Newman-Unti-TamburinéNUT) or a double
14 1 N i 1 (81) covering of Atiyah and Hitchin, depending on whether they
2r+24  2|r—24 |r| are associated with the gauge group4pG,, or SU3),
respectively. When the cloud size becomes large, all these

VI. CONCLUSION

ds’=G dr?+ G Y(dy+W-dr)?, (80)

where

G

andW is decided from the relatioWG= VX W. Clearly, this

asympototic form is hyperkder, as it satisfies the condition

for the toric hyperkhler space26]. This metric is correct  2A somewhat different approach has been taken in Reg].
whether or not thex* monopole is massless. In masslessThere the quotient space for Dancer's case is obtained by taking the
case, this hyperlder quotient can be obtained by holding infinite mass limit of the corresponding* monopole. This fixes
the position of the massless monopoledatelative to the the absolute position of the* monopole rather thag which is its
center of mass and let massive monopoles move around, iposition relative to the center of mass of two massfe mono-
teracting with each other and with the massless monopole. Ipoles. The resulting quotient metric seems not to be hypéekaas
massive case, we are holding #él'he position of the center it does not conform to the generic metric for toric hypérea

of mass would lie between the position of th& monopole  spaces.



5272 KIMYEONG LEE AND CHANGHAI LU 57

four-dimensional spaces approach the Atiyah-Hitchin spaceghe metric and it may be good enough. As argued in the
Another direction to explore is to find the moduli space inIntroduction, these configurations can be regarded as a mag-
the case whem* monopoles become massive so that therenetic dual of baryons and might lead to further insight on the
are two identical massive monopoles and one distinct masstructure of baryons.
sive monopole. We think that the moduli space in the theory
where Sp(4)-U(1)? is simpler than the similar problem in
the theory with SU(3)>U(1)?. Also this moduli space has a
role to play in theN=2 S duality [27]. Finding the moduli This work was supported in part by the U.S. Department
space will be a challenge. Finally, it would be very interest-of Energy. We thank Soonkeon Nam, Erick Weinberg, and
ing to find some structure of the moduli space of three masPiljin Yi for useful discussions. K.L. would like to thank
sive and three massless monopoles in the theory wherspen Center for Physics and APCTP/PIms summer work-
SU(4)—SU(3)xU(1). We know the asymptotic form of shop.
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